Archives of Microbiology

, Volume 200, Issue 4, pp 635–644 | Cite as

Characterization of multiple antilisterial peptides produced by sakacin P-producing Lactobacillus sakei subsp. sakei 2a

  • Kátia G. CarvalhoEmail author
  • Felipe H. S. Bambirra
  • Jacques R. Nicoli
  • Jamil S. Oliveira
  • Alexandre M. C. Santos
  • Marcelo P. Bemquerer
  • Antonio Miranda
  • Bernadette D. G. M. Franco
Original Paper


Antimicrobial compounds produced by lactic acid bacteria can be explored as natural food biopreservatives. In a previous report, the main antimicrobial compounds produced by the Brazilian meat isolate Lactobacillus sakei subsp. sakei 2a, i.e., bacteriocin sakacin P and two ribosomal peptides (P2 and P3) active against Listeria monocytogenes, were described. In this study, we report the spectrum of activity, molecular mass, structural identity and mechanism of action of additional six antilisterial peptides produced by Lb. sakei 2a, detected in a 24 h-culture in MRS broth submitted to acid treatment (pH 1.5) and proper fractionation and purification steps for obtention of free and cell-bound proteins. The six peptides presented similarity to different ribosomal proteins of Lb. sakei subsp sakei 23K and the molecular masses varied from 4.6 to 11.0 kDa. All peptides were capable to increase the efflux of ATP and decrease the membrane potential in Listeria monocytogenes. The activity of a pool of the obtained antilisterial compounds [enriched active fraction (EAF)] against Listeria monocytogenes in a food model (meat gravy) during refrigerated storage (4 °C) for 10 days was also tested and results indicated that the populations of L. monocytogenes in the food model containing the acid extract remained lower than those at time 0-day, evidencing that the acid extract of a culture of Lb. sakei 2a is a good technological alternative for the control of growth of L. monocytogenes in foods.


Lactobacillus sakei subsp. sakei 2a Listeria monocytogenes Multiple antimicrobial peptides Meat gravy Biopreservation 



The study was supported by FAPESP (Processes 2004/08041-9, 2005/60619-8 and 2013/07914-8) and FAPEMIG (EDT 24,000) Grants.

Compliance with ethical standards

Conflict of interest

No conflict of interest declared.


  1. Abee T (1995) Pore-forming bacteriocins of gram-positive bacteria and self-protection mechanisms of producer organisms. FEMS Microbiol Lett 129:1–10CrossRefPubMedGoogle Scholar
  2. Alves VF, Lavrador MAS, De Martinis ECPP. (2003) Bacteriocin exposure and food ingredients influence on growth and virulence of Listeria monocytogenes in a model meat gravy system. J Food Saf 23:201–217CrossRefGoogle Scholar
  3. Barbosa MS, Todorov SD, Ivanova I, Chobert JM, Haertl T, Franco BDGM. (2015) Improving safety of salami by application of bacteriocins produced by an autochthonous Lactobacillus curvatus isolate. Food Microbiol 46:254–262CrossRefGoogle Scholar
  4. Bradford MM (1976) Rapid and sensitive method for quantification of microgram quantities of proteins utilizing principle of protein–dye binding. Anal Biochem 72:248–254CrossRefPubMedGoogle Scholar
  5. Buchanan RL, Gorris L, Hayman MM, Jackson TC, Whiting RC (2017) A review of Listeria monocytogenes: an update on outbreaks, virulence, dose–response, ecology, and risk assessments. Food Control 75:1–13CrossRefGoogle Scholar
  6. Carvalho KG, Bambirra FHS, Kruger MF, Barbosa MS, Oliveira JS, Santos AMC, Nicoli JR, Bemquerer MP, Miranda A, Salvucci EJ, Sesma FJM, Franco BDGM. (2010) Antimicrobial compounds produced by Lactobacillus sakei subsp. sakei 2a, a bacteriocinogenic strain isolated from a Brazilian meat product. J Ind Microbiol Biotechnol 37:381–390CrossRefPubMedGoogle Scholar
  7. Castellano P, Mora l, Escudero E, Vignolo G, Aznar R, Toldra F (2016) Antilisterial peptides from Spanish dry-cured hams: purification and identification. Food Microbiol 59:133–141CrossRefPubMedGoogle Scholar
  8. Chaillou S, Champomier-Verges M, Cornet M, Crutz Lecoq AM, Dudez AM, Martin V, Beaufils S, Darbon-Rongere E, Bossy R, Loux V, Zagorec M (2005) The genome sequence of the meat-borne lactic acid bacterium Lactobacillus sakei 23K. Nat Biotechnol 23:1527–1533CrossRefPubMedGoogle Scholar
  9. Chen Y, Montville TJ (1995) Efflux of ions and ATP depletion induced by pediocin PA-1 are concomitant with cell death in Listeria monocytogenes Scott A. J Appl Bacteriol 79:684–690CrossRefGoogle Scholar
  10. De Martinis ECP, Franco BDGM. (1998) Inhibition of Listeria monocytogenes in a pork product by a Lactobacillus sake strain. Int J Food Microbiol 42:119–126CrossRefPubMedGoogle Scholar
  11. Drider D, Fimland G, Héchard Y, McMullen LM, Prévost H (2006) The continuing story of class IIa bacteriocins. Microbiol Mol Biol Rev 70:564–582CrossRefPubMedPubMedCentralGoogle Scholar
  12. Farias LM, Totola AH, Miranda CMS, Carvalho MAR, Damasceno CAV (1994) Extraction, partial purification and characterization of a bacteriocin (fragilicin) produced by a strain of Bacteroides fragilis isolated from Callithrix penicillata. Res Microbiol 145:9–16CrossRefPubMedGoogle Scholar
  13. Gaaloul N, Braiek OB, Hani K, Volski A, Chikindas ML, Ghrairi T (2014) Isolation and characterization of large spectrum and multiple bacteriocin-producing Enterococcus faecium strain from raw bovine milk. J Appl Microbiol 118:343–355CrossRefPubMedGoogle Scholar
  14. Guihard G, Benedettig SH, Besnard M, Letelliern L (1993) Phosphate efflux through the channels formed by colicins and phage T5 in Escherichia coli cells is responsible for the fall in cytoplasmic ATP. J Biol Chem 268:17775–17780PubMedGoogle Scholar
  15. Herranz C, Cintas LM, Hernandez PE, Moll GN, Driessen AJ (2001a) Enterocin P causes potassium ion efflux from Enterococcus faecium T136 cells. Antimicrob Agents Chemother 45:901–904CrossRefPubMedPubMedCentralGoogle Scholar
  16. Herranz C, Chen Y, Chung HJ, Cintas LM, Hernandez PE, Montville TJ, Chikindas ML (2001b) Enterocin P selectively dissipates the membrane potential of Enterococcus faecium T136. Appl Environ Microbiol 67:1689–1692CrossRefPubMedPubMedCentralGoogle Scholar
  17. Masuda Y, Perez RH, Zendo T, Sonomoto K (2015) Nutrition-adaptative control of multiple bacteriocin production by Weissella hellenica QU 13. J Appl Microbiol 120:70–79CrossRefGoogle Scholar
  18. Miao J, Liu G, Ke C, Fan W, Li C, Chen Y, Dixon W, Song M, Cao Y, Xiao H (2016) Inhibitory effects of a novel antimicrobial peptide from kefir against Escherichia coli. Food Control 65:63–72CrossRefGoogle Scholar
  19. Mirkovic N, Polovic N, Vukotic G, Jovcic B, Miljkovic M, Rdaulovic Z, Diep DB, Kojic M (2016) Lactococcus lactis LMG2081 produces two bacteriocins, a nonlantibiotic and a novel lantibiotic. Appl Environ Microbiol 82:2555–2562CrossRefPubMedPubMedCentralGoogle Scholar
  20. O’Connor PM, Ross RP, Hill C, Cotter PD (2015) Antimicrobial antagonists against food pathogens: a bacteriocin perspective. Curr Opin Food Sci 2:51–57CrossRefGoogle Scholar
  21. Rosa CM, Franco BDGM., Montville TJ, Chikindas M (2002) Purification and mechanistic action of a bacteriocin produced by a Brazilian sausage isolate, Lactobacillus sakei 2a. J Food Saf 22:39–54CrossRefGoogle Scholar
  22. Sawa N, Koga S, Okamura K, Ishibashi N, Zendo T, Sonomoto K (2013) Identification and characterization of novel multiple bacteriocins produced by Lactobacillus sakei D98. J Appl Microbiol 115:61–69CrossRefPubMedGoogle Scholar
  23. Snyder AB, Worobo RW (2014) Chemical and genetic characterization of bacteriocins: antimicrobial peptides for food safety. J Sci Food Agric 94:28–44CrossRefPubMedGoogle Scholar
  24. Suzuki M, Yamamoto T, Kawai Y, Inoue N, Yamazaki K (2005) Mode of action of piscicocin CS526 produced by Carnobacterium piscicola CS526. J Appl Microbiol 98:1146–1151CrossRefPubMedGoogle Scholar
  25. Todorov SD, Vaz-Velho M, Franco BDGM., Holzapfel WH (2013) Partial characterization of bacteriocins produced by three strains of Lactobacillus sakei, isolated from salpicao, a fermented meat product from North-West of Portugal. Food Control 30:111–121CrossRefGoogle Scholar
  26. Urso R, Rantsiou K, Cantoni C, Comi G, Cocolin L (2006) Technological characterization of a bacteriocin-producing Lactobacillus sakei and its use in fermented sausages production. Int J Food Microbiol 110:232–239CrossRefPubMedGoogle Scholar
  27. Ustyugova EA, Timofeeva AV, Stoyanova LG, Netrusov AI, Katrukha GS (2012) Characteristics and identification of bacteriocins produced by Lactococcus lactis subsp lactis 194-K. Appl Biochem Microbiol 48:557–563CrossRefGoogle Scholar
  28. Xiao J, Niu L (2015) Antilisterial peptides released by enzymatic hydrolysis from grass carp proteins and activity on controlling Listeria monocytogenes inoculated in surimi noodle. J Food Sci 80:M2564–M2569CrossRefGoogle Scholar
  29. Yang R, Johnson MC, Ray B (1992) Novel method to extract large amounts of bacteriocins from lactic acid bacteria. Appl Environ Microbiol 58:3355–3359PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Kátia G. Carvalho
    • 2
    Email author
  • Felipe H. S. Bambirra
    • 3
  • Jacques R. Nicoli
    • 3
  • Jamil S. Oliveira
    • 4
  • Alexandre M. C. Santos
    • 4
    • 6
  • Marcelo P. Bemquerer
    • 5
  • Antonio Miranda
    • 7
  • Bernadette D. G. M. Franco
    • 1
  1. 1.Food Research Center, Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências FarmacêuticasUniversidade de São PauloSão PauloBrazil
  2. 2.Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CONICETSan Miguel de TucumánArgentina
  3. 3.Departamento de Microbiologia, Instituto de Ciências BiológicasUniversidade Federal de Minas GeraisBelo HorizonteBrazil
  4. 4.Departamento de Bioquímica e Imunologia, Instituto de Ciências BiológicasUniversidade Federal de Minas GeraisBelo HorizonteBrazil
  5. 5.EMBRAPA Recursos Genéticos e BiotecnologiaParque Estação BiológicaBrasília, DFBrazil
  6. 6.Departamento de Ciências FisiológicasUniversidade Federal do Espírito SantoVitóriaBrazil
  7. 7.Departamento de BiofísicaUniversidade Federal de São PauloSão PauloBrazil

Personalised recommendations