Advertisement

Archives of Microbiology

, Volume 200, Issue 4, pp 589–601 | Cite as

Molecular diversity of Photorhabdus and Xenorhabdus bacteria, symbionts of Heterorhabditis and Steinernema nematodes retrieved from soil in Benin

  • Anique Godjo
  • Leonard Afouda
  • Hugues Baimey
  • Wilfrida Decraemer
  • Anne WillemsEmail author
Original Paper

Abstract

The diversity of 43 bacterial strains isolated from Beninese entomopathogenic nematodes was investigated molecularly by analyzing the 16S rRNA, recA, and gyrB genes. Based on 16S rRNA sequence analysis, 15 bacterial strains were identified as Xenorhabdus sp., 27 strains as Photorhabdus sp., and one as Serratia sp. The Xenorhabdus strains were isolated from Steinernema nematodes and identified as Xenorhabdus indica based on 16S rRNA gene and concatenated recA and gyrB sequence analysis. However, analysis of 16S rRNA and concatenated recA and gyrB gene sequences of the Photorhabdus strains, all isolated from Heterorhabditis nematodes, resulted in two separate sub-clusters (A) and (B) within the Photorhabdus luminescens group, distinct from the existing subspecies. They share low sequence similarities with nearest phylogenetic neighbors Photorhabdus luminescens subsp. luminescens HbT, Photorhabdus luminescens subsp. caribbeanensis HG29T, and Photorhabdus luminescens subsp. noenieputensis AM7T.

Keywords

GyrB RecA Entomopathogenic nematodes Symbiotic bacteria Photorhabdus luminescens Xenorhabdus indica 

Notes

Acknowledgements

This research was supported by the Special Research Fund (BOF) of Ghent University (Belgium), grant 01W00713. The authors would like to thank Pia Clercx and Andy Vierstraete for the excellent technical assistance and Nancy de Sutter for maintaining the nematode cultures at Flanders Research Institute for Agriculture, Fisheries and Food (ILVO).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

203_2017_1470_MOESM1_ESM.pdf (656 kb)
Supplementary material 1 (PDF 656 KB)
203_2017_1470_MOESM2_ESM.pdf (409 kb)
Supplementary material 2 (PDF 408 KB)

References

  1. Aguillera MM, Hodge NC, Stall RE, Smart GC (1993) Bacterial symbionts of Steinernema scapterisci. J Invertebr Pathol 62:68–72CrossRefGoogle Scholar
  2. Akhurst R (1980) Morphological and functional dimorphism in Xenorhabdus spp., bacteria symbiotically associated with the insect pathogenic nematodes Neoaplectana and Heterorhabditis. J Gen Microbiol 121:303–309Google Scholar
  3. Akhurst R (1982) Antibiotic activity of Xenorhabdus spp., bacteria symbiotically associated with insect pathogenic nematodes of the families Heterorhabditidae and Steinernematidae. J Gen Microbiol 128:3061–3065PubMedGoogle Scholar
  4. Akhurst R, Boemare N, Janssen P, Peel M, Alfredson D, Beard C (2004) Taxonomy of Australian clinical isolates of the genus Photorhabdus and proposal of Photorhabdus asymbiotica subsp. asymbiotica subsp. nov. and P. asymbiotica subsp. australis subsp. nov. Int J Syst Evol Microbiol 54:1301–1310CrossRefPubMedGoogle Scholar
  5. Babic I, Fischer-Le Saux M, Giraud E, Boemare N (2000) Occurrence of natural dixenic associations between the symbiont Photorhabdus luminescens and bacteria related to Ochrobactrum spp. in tropical entomopathogenic Heterorhabditis spp.(Nematoda, Rhabditida). Microbiology 146:709–718CrossRefPubMedGoogle Scholar
  6. Baimey H, Zadji L, Afouda L, Moens M, Decraemer W (2015) Influence of pesticides, soil temperature and moisture on entomopathogenic nematodes from southern Benin and control of underground termite nest populations. Nematology 17:1057–1069Google Scholar
  7. Bedding R, Akhurst R (1975) A simple technique for the detection of insect paristic rhabditid nematodes in soil. Nematologica 21:109–110CrossRefGoogle Scholar
  8. Bird A, Akhurst R (1983) The nature of the intestinal vesicle in nematodes of the family Steinernematidae. Int J Parasitol 13:599–606CrossRefGoogle Scholar
  9. Boemare N (2002) Biology, taxonomy and systematics of Photorhabdus and Xenorhabdus. In: Gaugler R (ed) Entomopathogenic nematology. CABI Publishing, New York, pp 35-56Google Scholar
  10. Boemare N, Akhurst R (1988) Biochemical and physiological characterization of colony form variants in Xenorhabdus spp. (Enterobacteriaceae). J Gen Microbiol 134:751–761Google Scholar
  11. Boemare N, Akhurst R, Mourant R (1993) DNA relatedness between Xenorhabdus spp. (Enterobacteriaceae), symbiotic bacteria of entomopathogenic nematodes, and a proposal to transfer Xenorhabdus luminescens to a new genus, Photorhabdus gen. nov. Int J Syst Bacteriol 43:249–255CrossRefGoogle Scholar
  12. Bonifassi E, Fischer-Le Saux M, Boemare N, Lanois A, Laumond C, Smart G (1999) Gnotobiological study of infective juveniles and symbionts of Steinernema scapterisci: a model to clarify the concept of the natural occurrence of monoxenic associations in entomopathogenic nematodes. J Invertebr Pathol 74:164–172CrossRefPubMedGoogle Scholar
  13. Cimen H, Půža V, Nermuť J, Hatting J, Ramakuwela T, Faktorova L, Hazir S (2016) Steinernema beitlechemi n. sp., a new entomopathogenic nematode (Nematoda: Steinernematidae) from South Africa. Nematology 18:439–453CrossRefGoogle Scholar
  14. Cleenwerck I, Vandemeulebroecke K, Janssens D, Swings J (2002) Re-examination of the genus Acetobacter, with descriptions of Acetobacter cerevisiae sp. nov. and Acetobacter malorum sp. nov. Int J Syst Evol Microbiol 52:1551–1558PubMedGoogle Scholar
  15. Cleenwerck I, Camu N, Engelbeen K, De Winter T, Vandemeulebroecke K, De Vos P, De Vuyst L (2007) Acetobacter ghanensis sp. nov., a novel acetic acid bacterium isolated from traditional heap fermentations of Ghanaian cocoa beans. Int J Syst Evol Microbiol 57:1647–1652CrossRefPubMedGoogle Scholar
  16. Coenye T, Falsen E, Vancanneyt M, Hoste B, Govan JR, Kersters K, Vandamme P (1999) Classification of Alcaligenes faecalis-like isolates from the environment and human clinical samples as Ralstonia gilardii sp. nov. Int J Syst Evol Microbiol 49:405–413Google Scholar
  17. Dreyer J, Malan AP, Dicks LMT (2017) Three novel Xenorhabdus–Steinernema associations and evidence of strains of X. khoisanae switching between different clades. Curr Microbiol 74:938–942CrossRefPubMedGoogle Scholar
  18. Ehlers R-U (2001) Mass production of entomopathogenic nematodes for plant protection. Appl Microbiol Biotechnol 56:623–633CrossRefPubMedGoogle Scholar
  19. Elawad S, Robson R, Hague N (1999) Observations on the bacterial symbiont associated with the nematode, Steinernema abbasi (Steinernematidae: Nematoda). In: COST, pp 105–111Google Scholar
  20. Emelianoff V, Sicard M, Le Brun N, Moulia C, Ferdy J-B (2007) Effect of bacterial symbionts Xenorhabdus on mortality of infective juveniles of two Steinernema species. Parasitol Res 100:657–659CrossRefPubMedGoogle Scholar
  21. Ferreira T, Van Reenen C, Tailliez P, Pagès S, Malan A, Dicks L (2016) First report of the symbiotic bacterium Xenorhabdus indica associated with the entomopathogenic nematode Steinernema yirgalemense. J Helminthol 90:108–112CrossRefPubMedGoogle Scholar
  22. Fischer-Le Saux M, Viallard V, Brunel B, Normand P, Boemare NE (1999) Polyphasic classification of the genus Photorhabdus and proposal of new taxa: P. luminescens subsp. luminescens subsp. nov. P. luminescens subsp. akhurstii subsp. nov., P. luminescens subsp. laumondii subsp. nov., P. temperata sp. nov., P. temperata subsp. temperata subsp. nov. and P. asymbiotica sp. nov. Int J Syst Evol Microbiol 49:1645–1656Google Scholar
  23. Forst S, Nealson K (1996) Molecular biology of the symbiotic-pathogenic bacteria Xenorhabdus spp. and Photorhabdus spp. Microbiol Rev 60:21–43PubMedPubMedCentralGoogle Scholar
  24. Forst S, Dowds B, Boemare N, Stackebrandt E (1997) Xenorhabdus and Photorhabdus spp.: bugs that kill bugs. Annu Rev Microbiol 51:47–72CrossRefPubMedGoogle Scholar
  25. Fukruksa C, Yimthin T, Suwannaroj M, Muangpat P, Tandhavanant S, Thanwisai A, Vitta A (2017) Isolation and identification of Xenorhabdus and Photorhabdus bacteria associated with entomopathogenic nematodes and their larvicidal activity against Aedes aegypti. Parasites Vectors 10:440CrossRefPubMedPubMedCentralGoogle Scholar
  26. Grewal PS, Selvan S, Gaugler R (1994) Thermal adaptation of entomopathogenic nematodes: niche breadth for infection, establishment, and reproduction. J Therm Biol 19:245–253CrossRefGoogle Scholar
  27. Hunt DJ, Subbotin SA (2016) Taxonomy and systematics. In: Hunt DJ, Nguyen KB (eds) Advances in Taxonomy and Phylogeny of Entomopathogenic Nematodes of the Steinernematidae and Heterorhabditidae, vol 12. Koninklijke Brill NV, Leiden, pp 13–58Google Scholar
  28. Kazimierczak W, Skrzypek H, Sajnaga E, Skowronek M, Waśko A, Kreft A (2017) Strains of Photorhabdus spp. associated with polish Heterorhabditis isolates: their molecular and phenotypic characterization and symbiont exchange. Arch Microbiol 199:979–989CrossRefPubMedGoogle Scholar
  29. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120CrossRefPubMedGoogle Scholar
  30. Lee M-M, Stock SP (2010) A multigene approach for assessing evolutionary relationships of Xenorhabdus spp.(γ-Proteobacteria), the bacterial symbionts of entomopathogenic Steinernema nematodes. J Invertebr Pathol 104:67–74CrossRefPubMedGoogle Scholar
  31. Liu J, Berry RE, Blouin MS (2001) Identification of symbiotic bacteria (Photorhabdus and Xenorhabdus) from the entomopathogenic nematodes Heterorhabditis marelatus and Steinernema oregonense based on 16S rDNA sequence. J Invertebr Pathol 77:87–91CrossRefPubMedGoogle Scholar
  32. Lysenko O, Weiser J (1974) Bacteria associated with the nematode Neoaplectana carpocapsae and the pathogenicity of this complex for Galleria mellonella larvae. J Invertebr Pathol 24:332–336CrossRefPubMedGoogle Scholar
  33. Martens EC, Goodrich-Blair H (2005) The Steinernema carpocapsae intestinal vesicle contains a subcellular structure with which Xenorhabdus nematophila associates during colonization initiation. Cell Microbiol 7:1723–1735CrossRefPubMedGoogle Scholar
  34. Muangpat P, Yooyangket T, Fukruksa C, Suwannaroj M, Yimthin T, Sitthisak S, Chantratita N, Vitta A, Tobias NJ, Bode HB (2017) Screening of the antimicrobial activity against drug resistant bacteria of Photorhabdus and Xenorhabdus associated with entomopathogenic nematodes from Mae Wong National Park, Thailand. Front Microbiol 8:1142CrossRefPubMedPubMedCentralGoogle Scholar
  35. Nguyen K, Hunt D (2007) Entomopathogenic nematodes: systematics, phylogeny and bacterial symbionts vol 5. Nematology monographs and perspectives. Brill, Leiden-BostonCrossRefGoogle Scholar
  36. Orozco RA, Hill T, Stock SP (2013) Characterization and Phylogenetic Relationships of Photorhabdus luminescens subsp. sonorensis (γ-Proteobacteria: Enterobacteriaceae), the Bacterial Symbiont of the Entomopathogenic Nematode Heterorhabditis sonorensis (Nematoda: Heterorhabditidae). Curr Microbiol 66:30–39CrossRefPubMedGoogle Scholar
  37. Peat SM, Waterfield NR, Marokházi J, Fodor A, Adams BJ (2010) A robust phylogenetic framework for the bacterial genus Photorhabdus and its use in studying the evolution and maintenance of bioluminescence: a case for 16S, gyrB, and glnA. Mol Phylogenet Evol 57:728–740CrossRefPubMedGoogle Scholar
  38. Pitcher D, Saunders N, Owen R (1989) Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett Appl Microbiol 8:151–156CrossRefGoogle Scholar
  39. Rainey F, Ehlers R-U, Stackebrandt E (1995) Inability of the polyphasic approach to systematics to determine the relatedness of the genera Xenorhabdus and Photorhabdus. Int J Syst Evol Microbiol 45:379–381Google Scholar
  40. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  41. Sergeant M, Baxter L, Jarrett P, Shaw E, Ousley M, Winstanley C, Morgan JAW (2006) Identification, typing, and insecticidal activity of Xenorhabdus isolates from entomopathogenic nematodes in United Kingdom soil and characterization of the xpt toxin loci. Appl Environ Microbiol 72:5895–5907CrossRefPubMedPubMedCentralGoogle Scholar
  42. Smigielski AJ, Akhurst RJ, Boemare NE (1994) Phase variation in Xenorhabdus nematophilus and Photorhabdus luminescens: differences in respiratory activity and membrane energization. Appl Environ Microbiol 60:120–125PubMedPubMedCentralGoogle Scholar
  43. Somvanshi VS, Lang E, Ganguly S, Swiderski J, Saxena AK, Stackebrandt E (2006) A novel species of Xenorhabdus, family Enterobacteriaceae: Xenorhabdus indica sp. nov., symbiotically associated with entomopathogenic nematode Steinernema thermophilum Ganguly and Singh 2000. Syst Appl Microbiol 29:519–525CrossRefPubMedGoogle Scholar
  44. Spiridonov SE, Subbotin SA (2016) Phylogeny and phylogeography of Heterorhabditis and Steinernema. Adv Entomopathog Nematode Taxon Phylogeny 12:413–427Google Scholar
  45. Stock SP (2015) Diversity, biology and evolutionary relationships. In: R C-H (ed) Nematode pathogenesis of insects and other pests. Springer, Berlin, pp 3–27CrossRefGoogle Scholar
  46. Strauch O, Ehlers R-U (1998) Food signal production of Photorhabdus luminescens inducing the recovery of entomopathogenic nematodes Heterorhabditis spp. in liquid culture. Appl Microbiol Biotechnol 50:369–374CrossRefGoogle Scholar
  47. Szállás E, Koch C, Fodor A, Burghardt J, Buss O, Szentirmai A, Nealson KH, Stackebrandt E (1997) Phylogenetic evidence for the taxonomic heterogeneity of Photorhabdus luminescens. Int J Syst Evol Microbiol 47:402–407Google Scholar
  48. Tailliez P, Pages S, Ginibre N, Boemare N (2006) New insight into diversity in the genus Xenorhabdus, including the description of ten novel species. Int J Syst Evol Microbiol 56:2805–2818CrossRefPubMedGoogle Scholar
  49. Tailliez P, Laroui C, Ginibre N, Paule A, Pagès S, Boemare N (2010) Phylogeny of Photorhabdus and Xenorhabdus based on universally conserved protein-coding sequences and implications for the taxonomy of these two genera. Proposal of new taxa: X. vietnamensis sp. nov. P. luminescens subsp. caribbeanensis subsp. nov., P. luminescens subsp. hainanensis subsp. nov., P. temperata subsp. khanii subsp. nov., P. temperata subsp. tasmaniensis subsp. nov., and the reclassification of P. luminescens subsp. thracensis as P. temperata subsp. thracensis comb. nov. Int J Syst Evol Microbiol 60:1921–1937CrossRefPubMedGoogle Scholar
  50. Tailliez P, Pagès S, Edgington S, Tymo LM, Buddie AG (2012) Description of Xenorhabdus magdalenensis sp. nov., the symbiotic bacterium associated with Steinernema australe. Int J Syst Evol Microbiol 62:1761–1765CrossRefPubMedGoogle Scholar
  51. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729CrossRefPubMedPubMedCentralGoogle Scholar
  52. Thanwisai A, Tandhavanant S, Saiprom N, Waterfield NR, Long PK, Bode HB, Peacock SJ, Chantratita N (2012) Diversity of Xenorhabdus and Photorhabdus spp. and their symbiotic entomopathogenic nematodes from Thailand. PLoS One 7:e43835CrossRefPubMedPubMedCentralGoogle Scholar
  53. Thomas GM, Poinar GO (1979) Xenorhabdus gen. nov., a genus of entomopathogenic, nematophilic bacteria of the family Enterobacteriaceae. Int J Syst Bacteriol 29:352–360CrossRefGoogle Scholar
  54. Torres-Barragan A, Suazo A, Buhler WG, Cardoza YJ (2011) Studies on the entomopathogenicity and bacterial associates of the nematode Oscheius carolinensis. Biol Control 59:123–129CrossRefGoogle Scholar
  55. Tóth T, Lakatos T (2008) Photorhabdus temperata subsp. cinerea subsp. nov., isolated from Heterorhabditis nematodes. Int J Syst Evol Microbiol 58:2579–2581CrossRefPubMedGoogle Scholar
  56. Vrain T, Wakarchuk D, Levesque A, Hamilton R (1992) Intraspecific rDNA restriction fragment length polymorphism in the Xiphinema americanum group. Fund Appl Nematol 15:563–573Google Scholar
  57. White G (1927) A method for obtaining infective nematode larvae from cultures. Science 66:302–303CrossRefPubMedGoogle Scholar
  58. Zadji L, Baimey H, Afouda L, Houssou FG, Waeyenberge L, de Sutter N, Moens M, Decraemer W (2013) First record on the distribution of entomopathogenic nematodes (Rhabditida: Steinernematidae and Heterorhabditidae) in Southern Benin. Russ J Nematol 21:117–130Google Scholar
  59. Zadji L, Baimey H, Afouda L, Moens M, Decraemer W (2014) Comparative susceptibility of Macrotermes bellicosus and Trinervitermes occidentalis (Isoptera: Termitidae) to entomopathogenic nematodes from Benin. Nematology 16:719–727CrossRefGoogle Scholar
  60. Zhang C, Liu J, Xu M, Sun J, Yang S, An X, Gao G, Lin M, Lai R, He Z (2008) Heterorhabditidoides chongmingensis gen. nov., sp. nov.(Rhabditida: Rhabditidae), a novel member of the entomopathogenic nematodes. J Invertebr Pathol 98:153–168CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Crop Production, Faculty of AgronomyUniversity of ParakouParakouBenin
  2. 2.Department of Biochemistry and Microbiology, Faculty of SciencesGhent UniversityGhentBelgium
  3. 3.Department of Biology, Faculty of SciencesGhent UniversityGhentBelgium

Personalised recommendations