Archives of Microbiology

, Volume 200, Issue 4, pp 603–610 | Cite as

Mesorhizobium zhangyense sp. nov., isolated from wild Thermopsis lanceolate in northwestern China

  • Lin Xu
  • Yong Zhang
  • Osama Abdalla Mohamad
  • Chenying Jiang
  • Ville-Petri Friman
Original Paper


A Gram-stain-negative strain, 23-3-2T, was isolated from a nodule of Thermopsis lanceolate grown in Northwest China. Phylogenetic analysis of 16S rRNA gene sequence showed that the strain was closely related to Mesorhizobium camelthorni CCNWXJ 40-4T and M. alhagi CCNWXJ 12-2T having 98.0 and 97.9% similarities, respectively. Phylogenetic analysis based on the protein-coding genes atpD and glnA showed lower similarity with the same closely related species (94.5 and 89.9%, respectively), which suggest that 23-3-2T strain represents a distinctly delineated genospecies of the genus Mesorhizobium. The 23-3-2T strain grew at 20–37 °C temperature (optimum 28 °C) and 5.0–9.0 pH range (optimum pH 7.0). The cells contained Q-10 as the sole respiratory quinone and 18:1ω7c (24.56%) as the major cellular fatty acid. The DNA relatedness between the strain 23-3-2T and the two reference strains was 39–44%. Based on the phenotypic, chemotaxonomic and phylogenetic properties, strain 23-3-2T represents a novel species of the genus Mesorhizobium, for which the name Mesorhizobium zhangyense sp. nov. is proposed. The type strain is 23-3-2T (= CGMCC 1.15528T = NBRC 112337T). The respective DPD Taxon Number is TA00147.


Mesorhizobium Novel species Thermopsis lanceolate 



This work was supported by projects from the National Science Foundation of China (31360004), Chinese Scholarship Council and project of Education Department of Gansu Province (2014A-107). We are grateful to Dr. Yuguang Zhou and Lei Song for deposition of the strain in the culture collections. We also thank Professor Gehong Wei and Dr. Weimin Chen for offering the reference strains to us.

Supplementary material

203_2017_1464_MOESM1_ESM.doc (50 kb)
Supplementary material 1 (DOC 50 KB)
203_2017_1464_MOESM2_ESM.tif (1.2 mb)
Transmission electron micrograph of the strain 23-3-2T. Bar indicates 1.0 μm (TIF 1202 KB)
203_2017_1464_MOESM3_ESM.pdf (440 kb)
Supplementary material 3 (PDF 439 KB)


  1. Allen ON, Allen EK (1981) The Leguminosae: a source book of characteristics, uses, and nodulation. University of Wisconsin Press, MadisonCrossRefGoogle Scholar
  2. De Ley J, Cattoir H, Reynaerts A (1970) The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142CrossRefPubMedGoogle Scholar
  3. De Meyer SE, Tan HW, Andrews M, Heenan PB, Willems A (2016) Mesorhizobium calcicola sp. nov. Mesorhizobium waitakense sp. nov., Mesorhizobium sophorae sp. nov., Mesorhizobium newzealandense sp. nov. and Mesorhizobium kowhaii sp. nov. isolated from Sophora root nodules. Int J Syst Evol Microbiol 66:786–795CrossRefPubMedGoogle Scholar
  4. De-Meyer SE, Tan HW, Heenan PB, Andrews M, Willems A (2015) Mesorhizobium waimense sp. nov. isolated from Sophora longicarinata root nodules and Mesorhizobium cantuariense sp. nov. isolated from Sophora microphylla root nodules. Int J Syst Evol Microbiol 65:3419–3426CrossRefPubMedGoogle Scholar
  5. Elliott GN, Chen WM, Bontemps C, Chou JH, Young JPW, Sprent JI, James EK (2007) Nodulation of Cyclopia spp. (Leguminosae, Papilionoideae) by Burkholderia tuberum. Ann Bot (London) 100:1403–1411CrossRefGoogle Scholar
  6. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefPubMedGoogle Scholar
  7. Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Biol 20:406–416CrossRefGoogle Scholar
  8. Galtier N, Gouy M, Gautier C (1996) SEAVIEW and PHYLO_WIN: two graphic tools for sequence alignment and molecular phylogeny. Computer applications in the biosciences. CABIOS 12:543–548PubMedGoogle Scholar
  9. Gao JL, Sun JG, Li Y, Wang ET, Chen WX (1994) Numerical taxonomy and DNA relatedness of tropical rhizobia isolated from Hainan Province, China. Int J Syst Evol Microbiol 44:151–158Google Scholar
  10. Gaunt MW, Turner SL, Rigottier-Gois L, Lioyd-Macgilp SA, Young JPW (2001) Phylogenies of atpD and recA support the small subunit rRNA-based classification of rhizobia. Int J Syst Evol Microbiol 51:2037–2048CrossRefPubMedGoogle Scholar
  11. Haukka K, Lindström K, Young JPW (1998) Three phylogenetic groups of nodA and nifH genes in Sinorhizobium and Mesorhizobium isolates from leguminous trees growing in Africa and Latin America. Appl Environ Microbiol 64:419–426PubMedPubMedCentralGoogle Scholar
  12. Jarvis BDW, van Berkum P, Chen WX, Nour SM, Fernandez MP, Cleyet-Marel JC, Gillis M (1997) Transfer of Rhizobium loti, Rhizobium huakuii, Rhizobium ciceri, Rhizobium mediterraneum, and Rhizobium tianshanense to Mesorhizobium gen. nov. Int J Syst Bacteriol 47:895–898CrossRefGoogle Scholar
  13. Kathiravan R, Jegan S, Ganga V, Prabavathy VR, Tushar L, Sasikala C, Ramana CV (2013) Ciceribacter lividus gen. nov., sp. nov., isolated from rhizosphere soil of chick pea (Cicer arietinum L.). Int J Syst Evol Microbiol 63:4484–4488CrossRefPubMedGoogle Scholar
  14. Komagata K, Suzuki K (1987) Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19:161–207CrossRefGoogle Scholar
  15. Laguerre G, Nour SM, Macheret V, Sanjuan J, Drouin P, Amarger N (2001) Classification of rhizobia based on nodC and nifH gene analysis reveals a close phylogenetic relationship among Phaseolus vulgaris symbionts. Microbiology 147:981–993CrossRefPubMedGoogle Scholar
  16. Logan NA, Berge O, Bishop AH, Busse HJ, De Vos P, Fritze D, Heyndrickx M, Ka¨mpfer P, Rabinovitch L (2009) Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. Int J Syst Evol Microbiol 59:2114–2121CrossRefPubMedGoogle Scholar
  17. Marmur J (1961) A procedure for the isolation of DNA from microorganisms. J Mol Biol 3:208–218CrossRefGoogle Scholar
  18. Marmur J, Doty P (1962) Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118CrossRefPubMedGoogle Scholar
  19. Martinez-Hidalgo P, Ramirez-Banhena MH, Flores-Felix JD, Rivas R, Igual JM, Mateos PF, Martinez-Molina E, Leon-Barrios M, Peix A, Velazquez E (2015) Revision of the taxonomic status of type strains of Mesorhizobium loti and reclassification of strain USDA 3471T as the type strain of Mesorhizobium erdmanii sp. nov. and ATCC 33669T as the type strain of Mesorhizobium jarvisii sp. nov. Int J Syst Evol Microbiol 65:1703–1708CrossRefPubMedGoogle Scholar
  20. Moulin L, Munive A, Dreyfus B, Boivin-Masson C (2001) Nodulation of legumes by members of the beta-subclass of Proteobacteria. Nature 411:948–950CrossRefPubMedGoogle Scholar
  21. Mousavi SA, Willems A, Nesme X, De Lajudie P, Lindström K (2015) Revised phylogeny of Rhizobiaceae: proposal of the delineation of Pararhizobium gen. nov., and 13 new species combinations. Syst Appl Microbiol 38:84–90CrossRefPubMedGoogle Scholar
  22. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  23. Schaeffer AB, Fulton MD (1933) A simplified method of staining endospores. Science 77:194CrossRefPubMedGoogle Scholar
  24. Smibert RM, Krieg NR (1994) Phenotypic characterization. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, DC, pp 607–654Google Scholar
  25. Sprent JI, Sprent P (1990) Nitrogen fixing organisms. Pure and applied aspects. Chapman & Hall, LondonCrossRefGoogle Scholar
  26. Sy A, Giraud E, Jourand P (2001) Methylotrophic methylobacterium bacteria nodulate and fix nitrogen in symbiosis with legumes. J Bacteriol 183:214–220CrossRefPubMedPubMedCentralGoogle Scholar
  27. Tan ZY, Xu XD, Wang ET, Gao JL, Martínez-Romero E, Chen WX (1997) Phylogenetic and genetic relationships of Mesorhizobium tianshanense and related rhizobia. Int J Syst Bacteriol 47:874–879CrossRefPubMedGoogle Scholar
  28. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882CrossRefPubMedPubMedCentralGoogle Scholar
  29. Tighe SW, De Lajudie P, Dipietro K, Lindström K, Nick G, Jarvis BD (2000) Analysis of cellular fatty acids and phenotypic relationships of Agrobacterium, Bradyrhizobium, Mesorhizobium, Rhizobium and Sinorhizobium species using the Sherlock Microbial Identification System. Int J Syst Evol Microbiol 50:787–801CrossRefPubMedGoogle Scholar
  30. Turner SL, Young JPW (2000) The glutamine synthetases of rhizobia: phylogenetics and evolutionary implications. Mol Biol Evol 17:309–319CrossRefPubMedGoogle Scholar
  31. Vinuesa P, Silva C, Lorite MJ, Izaguirre-Mayoral ML, Bedmar EJ, Martínez-Romero E (2005) Molecular systematics of rhizobia based on maximum likelihood and Bayesian phylogenies inferred from rrs, atpD, recA and nifH sequences, and their use in the classification of Sesbania microsymbionts from Venezuelan wetlands. Syst Appl Microbiol 28:702–216CrossRefPubMedGoogle Scholar
  32. Wang ET, van Berkum P, Sui XH, Beyene D, Chen WX, Martínez-Romero E (1999) Diversity of rhizobia associated with Amorpha fruticosa isolated from Chinese soils and description of Mesorhizobium amorphae sp. nov. Int J Syst Evol Microbiol 49:51–65Google Scholar
  33. Weakley AS (2008) Flora of the Carolinas, VirginiaGoogle Scholar
  34. Wei GH, Zhu ME, Wang ET, Tan ZY, Chen WX (2002) Rhizobium indigoferae sp. nov. and Ensifer kummerowiae sp. nov. isolated from Indigofera spp. and Kummerowia stipulacea. Int J Syst Evol Microbiol 52:2231–2239PubMedGoogle Scholar
  35. Xu L, Zhang Y, Deng ZS, Zhao L, Wei XL, Wei GH (2013) Rhizobium qilianshanense sp. nov., a novel species isolated from root nodule of Oxytropis ochrocephala Bunge in China. Antonie Van Leeuwenhoek 103:559–565CrossRefPubMedGoogle Scholar
  36. Xu L, Zhang Y, Read N, Liu S, Friman VP (2017) Devosia nitraria sp. nov., a novel species isolated from the roots of Nitraria sibirica in China. Antonie van Leeuwenhoek. PubMedCentralGoogle Scholar
  37. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J (2016) Introducing EzBioCloud: A taxonomically united database of 16S rRNA and whole genome assemblies. Int J Syst Evol Microbiol. Google Scholar
  38. Yuan L (2010) Analysis of the components and bioactivity of alkaloids from Thermopsis lanceolate. Ninxia University, YinchuanGoogle Scholar
  39. Zhang YJ, Yuan QP, Liang H (2003) The biosynthesis of coenzyme Q10 in Bullera pseudoalba. Microbiology 30:65–69Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Key Laboratory of Hexi Corridor Resources UtilizationHexi UniversityZhangyeChina
  2. 2.Department of BiologyUniversity of YorkYorkUK
  3. 3.State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
  4. 4.Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and GeographyChinese Academy of Sciences(CAS)ÜrümqiChina
  5. 5.Institute for Post Graduate Environmental Studies, Environmental Science DepartmentArish UniversityNorth SinaiEgypt

Personalised recommendations