Advertisement

Archives of Microbiology

, Volume 200, Issue 2, pp 203–217 | Cite as

A review of metabolic potential of human gut microbiome in human nutrition

  • Monika Yadav
  • Manoj Kumar Verma
  • Nar Singh ChauhanEmail author
Mini-Review

Abstract

The human gut contains a plethora of microbes, providing a platform for metabolic interaction between the host and microbiota. Metabolites produced by the gut microbiota act as a link between gut microbiota and its host. These metabolites act as messengers having the capacity to alter the gut microbiota. Recent advances in the characterization of the gut microbiota and its symbiotic relationship with the host have provided a platform to decode metabolic interactions. The human gut microbiota, a crucial component for dietary metabolism, is shaped by the genetic, epigenetic and dietary factors. The metabolic potential of gut microbiota explains its significance in host health and diseases. The knowledge of interactions between microbiota and host metabolism, as well as modification of microbial ecology, is really beneficial to have effective therapeutic treatments for many diet-related diseases in near future. This review cumulates the information to map the role of human gut microbiota in dietary component metabolism, the role of gut microbes derived metabolites in human health and host–microbe metabolic interactions in health and diseases.

Keywords

Gut microbiota Microbiome Microbiota 

Notes

Acknowledgements

Authors would like to thank Council of Scientific and Industrial Research (CSIR), Govt. of India for financial support under the scheme 60(0099)/11/EMRII. Monika is thankful to University grant Commission for Junior research fellowship.

Compliance with ethical standards

Conflict of interest

No conflict of interest exists.

References

  1. Acheson DWK, Luccioli S (2004) Microbial–gut interactions in health and disease. Mucosal immune responses. Best Pract Res Clin Gastroenterol 18:387–404. doi:  https://doi.org/10.1016/j.bpg.2003.11.002 PubMedCrossRefGoogle Scholar
  2. Andersson AF, Lindberg M, Jakobsson H et al (2008) Comparative analysis of human gut microbiota by barcoded pyrosequencing. PloS One 3:e2836. doi:  https://doi.org/10.1371/journal.pone.0002836 PubMedPubMedCentralCrossRefGoogle Scholar
  3. Barrett E, Kerr C, Murphy K et al (2013) The individual-specific and diverse nature of the preterm infant microbiota. Arch Dis Child Fetal Neonatal Ed 98:F334–F340. doi:  https://doi.org/10.1136/archdischild-2012-303035 PubMedCrossRefGoogle Scholar
  4. Belenguer A, Duncan SH, Calder AG et al (2006) Two routes of metabolic cross-feeding between Bifidobacterium adolescentis and butyrate-producing anaerobes from the human gut. Appl Environ Microbiol 72:3593–3599. doi:  https://doi.org/10.1128/AEM.72.5.3593-3599.2006 PubMedPubMedCentralCrossRefGoogle Scholar
  5. Bhute S, Pande P, Shetty SA et al (2016) Molecular characterization and meta-analysis of gut microbial communities illustrate enrichment of Prevotella and Megasphaera in Indian subjects. Front Microbiol. doi:  https://doi.org/10.3389/fmicb.2016.00660 Google Scholar
  6. Bik EM, Eckburg PB, Gill SR et al (2006) Molecular analysis of the bacterial microbiota in the human stomach. Proc Natl Acad Sci USA 103:732–737. doi:  https://doi.org/10.1073/pnas.0506655103 PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bingham SA, Pignatelli B, Pollock JR et al (1996) Does increased endogenous formation of N-nitroso compounds in the human colon explain the association between red meat and colon cancer? Carcinogenesis 17:515–523PubMedCrossRefGoogle Scholar
  8. Bjerrum JT, Wang Y, Hao F et al (2015) Metabonomics of human fecal extracts characterize ulcerative colitis, Crohn’s disease and healthy individuals. Metab Off J Metab Soc 11:122–133. doi:  https://doi.org/10.1007/s11306-014-0677-3 Google Scholar
  9. Boyd SD, Liu Y, Wang C et al (2013) Human lymphocyte repertoires in ageing. Curr Opin Immunol 25:511–515. doi:  https://doi.org/10.1016/j.coi.2013.07.007 PubMedPubMedCentralCrossRefGoogle Scholar
  10. Braune A, Blaut M (2016) Bacterial species involved in the conversion of dietary flavonoids in the human gut. Gut Microbes 7:216–234. doi:  https://doi.org/10.1080/19490976.2016.1158395 PubMedPubMedCentralCrossRefGoogle Scholar
  11. Braune A, Engst W, Blaut M (2016) Identification and functional expression of genes encoding flavonoid O- and C-glycosidases in intestinal bacteria. Environ Microbiol 18:2117–2129. doi:  https://doi.org/10.1111/1462-2920.12864 PubMedCrossRefGoogle Scholar
  12. Carroll BJ (1971) Monoamine precursors in the treatment of depression. Clin Pharmacol Ther 12:743–761. doi:  https://doi.org/10.1002/cpt1971125743 PubMedCrossRefGoogle Scholar
  13. Chen Y, Blaser MJ (2007) Inverse associations of Helicobacter pylori with asthma and allergy. Arch Intern Med 167:821–827. doi:  https://doi.org/10.1001/archinte.167.8.821 PubMedCrossRefGoogle Scholar
  14. Christl SU, Murgatroyd PR, Gibson GR, Cummings JH (1992) Production, metabolism, and excretion of hydrogen in the large intestine. Gastroenterology 102:1269–1277PubMedCrossRefGoogle Scholar
  15. Christl SU, Gibson GR, Murgatroyd PR et al (1993) Impaired hydrogen metabolism in pneumatosis cystoides intestinalis. Gastroenterology 104:392–397PubMedCrossRefGoogle Scholar
  16. Chu F-F, Esworthy RS, Chu PG et al (2004) Bacteria-induced intestinal cancer in mice with disrupted Gpx1 and Gpx2 genes. Cancer Res 64:962–968PubMedCrossRefGoogle Scholar
  17. Chung H, Pamp SJ, Hill JA et al (2012) Gut immune maturation depends on colonization with a host-specific microbiota. Cell 149(7):1578–1593PubMedPubMedCentralCrossRefGoogle Scholar
  18. Coe CL, Lulbach GR, Schneider ML (2002) Prenatal disturbance alters the size of the corpus callosum in young monkeys. Dev Psychobiol 41:178–185. doi:  https://doi.org/10.1002/dev.10063 PubMedCrossRefGoogle Scholar
  19. Cord-Ruwisch R, Seitz H-J, Conrad R (1988) The capacity of hydrogenotrophic anaerobic bacteria to compete for traces of hydrogen depends on the redox potential of the terminal electron acceptor. Arch Microbiol 149:350–357. doi:  https://doi.org/10.1007/BF00411655 CrossRefGoogle Scholar
  20. Corrodi P, Wideman PA, Sutter VL et al (1978) Bacterial flora of the small bowel before and after bypass procedure for morbid obesity. J Infect Dis 137:1–6PubMedCrossRefGoogle Scholar
  21. Cummings JH, Englyst HN (1987) Fermentation in the human large intestine and the available substrates. Am J Clin Nutr 45:1243–1255PubMedCrossRefGoogle Scholar
  22. Cummings JH, Macfarlane GT (1997) Role of intestinal bacteria in nutrient metabolism. Clin Nutr 16:3–11. doi:  https://doi.org/10.1016/S0261-5614(97)80252-X CrossRefGoogle Scholar
  23. Dai Z-L, Zhang J, Wu G, Zhu W-Y (2010) Utilization of amino acids by bacteria from the pig small intestine. Amino Acids 39:1201–1215. doi:  https://doi.org/10.1007/s00726-010-0556-9 PubMedCrossRefGoogle Scholar
  24. Dayan J, Creveuil C, Marks MN et al (2006) Prenatal depression, prenatal anxiety, and spontaneous preterm birth: a prospective cohort study among women with early and regular care. Psychosom Med 68:938–946. doi:  https://doi.org/10.1097/01.psy.0000244025.20549.bd PubMedCrossRefGoogle Scholar
  25. De Filippo C, Cavalieri D, Di Paola M et al (2010) Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci USA 107:14691–14696. doi:  https://doi.org/10.1073/pnas.1005963107 PubMedPubMedCentralCrossRefGoogle Scholar
  26. Decroos K, Vanhemmens S, Cattoir S et al (2005) Isolation and characterisation of an equol-producing mixed microbial culture from a human faecal sample and its activity under gastrointestinal conditions. Arch Microbiol 183:45–55. doi:  https://doi.org/10.1007/s00203-004-0747-4 PubMedCrossRefGoogle Scholar
  27. Derrien M, van Passel MW, van de Bovenkamp JH et al (2010) Mucin-bacterial interactions in the human oral cavity and digestive tract. Gut Microbes 1:254–268. doi:  https://doi.org/10.4161/gmic.1.4.12778 PubMedPubMedCentralCrossRefGoogle Scholar
  28. Dinakaran V, Rathinavel A, Pushpanathan M et al (2014) Elevated levels of circulating DNA in cardiovascular disease patients: metagenomic profiling of microbiome in the circulation. PLoS One 9:e105221. doi:  https://doi.org/10.1371/journal.pone.0105221 PubMedPubMedCentralCrossRefGoogle Scholar
  29. Dominguez-Bello MG, Blaser MJ (2008) Do you have a probiotic in your future? Microbes Infect 10:1072–1076. doi:  https://doi.org/10.1016/j.micinf.2008.07.036 PubMedPubMedCentralCrossRefGoogle Scholar
  30. Dominguez-Bello MG, Costello EK, Contreras M et al (2010) Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci USA 107:11971–11975. doi:  https://doi.org/10.1073/pnas.1002601107 PubMedPubMedCentralCrossRefGoogle Scholar
  31. Dominguez-Bello MG, Blaser MJ, Ley RE, Knight R (2011) Development of the human gastrointestinal microbiota and insights from high-throughput sequencing. Gastroenterology 140:1713–1719. doi:  https://doi.org/10.1053/j.gastro.2011.02.011 PubMedCrossRefGoogle Scholar
  32. Dougherty DM, Marsh-Richard DM, Mathias CW et al (2008) Comparison of 50- and 100-g l-tryptophan depletion and loading formulations for altering 5-HT synthesis: pharmacokinetics, side effects, and mood states. Psychopharmacology 198:431–445. doi:  https://doi.org/10.1007/s00213-008-1163-2 PubMedPubMedCentralCrossRefGoogle Scholar
  33. Duda-Chodak A, Tarko T, Satora P, Sroka P (2015) Interaction of dietary compounds, especially polyphenols, with the intestinal microbiota: a review. Eur J Nutr 54:325–341. doi:  https://doi.org/10.1007/s00394-015-0852-y PubMedPubMedCentralCrossRefGoogle Scholar
  34. Dumas M-E, Barton RH, Toye A et al (2006) Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice. Proc Natl Acad Sci USA 103:12511–12516.  https://doi.org/10.1073/pnas.0601056103 PubMedPubMedCentralCrossRefGoogle Scholar
  35. Duncan SH, Louis P, Flint HJ (2004) Lactate-utilizing bacteria, isolated from human feces, that produce butyrate as a major fermentation product. Appl Environ Microbiol 70:5810–5817. doi:  https://doi.org/10.1128/AEM.70.10.5810-5817.2004 PubMedPubMedCentralCrossRefGoogle Scholar
  36. Dutton RJ, Turnbaugh PJ (2012) Taking a metagenomic view of human nutrition. Curr Opin Clin Nutr Metab Care 15:448–454. doi:  https://doi.org/10.1097/MCO.0b013e3283561133 PubMedCrossRefGoogle Scholar
  37. Eberl G (2005) Inducible lymphoid tissues in the adult gut: recapitulation of a fetal developmental pathway? Nat Rev Immunol 5:413–420. doi:  https://doi.org/10.1038/nri1600 PubMedCrossRefGoogle Scholar
  38. Eckburg PB, Bik EM, Bernstein CN et al (2005) Diversity of the human intestinal microbial flora. Science 308:1635–1638. doi:  https://doi.org/10.1126/science.1110591 PubMedPubMedCentralCrossRefGoogle Scholar
  39. Falony G, Vlachou A, Verbrugghe K, De Vuyst L (2006) Cross-feeding between Bifidobacterium longum BB536 and acetate-converting, butyrate-producing colon bacteria during growth on oligofructose. Appl Environ Microbiol 72:7835–7841. doi:  https://doi.org/10.1128/AEM.01296-06 PubMedPubMedCentralCrossRefGoogle Scholar
  40. Fetissov SO (2017) Role of the gut microbiota in host appetite control: bacterial growth to animal feeding behaviour. Nat Rev Endocrinol 13(1):11–25PubMedCrossRefGoogle Scholar
  41. Flint HJ, Bayer EA, Rincon MT et al (2008) Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis. Nat Rev Microbiol 6:121–131. doi:  https://doi.org/10.1038/nrmicro1817 PubMedCrossRefGoogle Scholar
  42. Flint HJ, Scott KP, Louis P, Duncan SH (2012) The role of the gut microbiota in nutrition and health. Nat Rev Gastroenterol Hepatol 9:577–589. doi:  https://doi.org/10.1038/nrgastro.2012.156 PubMedCrossRefGoogle Scholar
  43. Freeman DJ, McManus F, Brown EA et al (2004) Short- and long-term changes in plasma inflammatory markers associated with preeclampsia. Hypertens Dallas Tex 1979 44:708–714. doi:  https://doi.org/10.1161/01.HYP.0000143849.67254.ca Google Scholar
  44. Frick PG, Riedler G, Brögli H (1967) Dose response and minimal daily requirement for vitamin K in man. J Appl Physiol 23:387–389PubMedCrossRefGoogle Scholar
  45. Gao Z, Tseng C, Strober BE et al (2008) Substantial alterations of the cutaneous bacterial biota in psoriatic lesions. PloS One 3:e2719. doi:  https://doi.org/10.1371/journal.pone.0002719 PubMedPubMedCentralCrossRefGoogle Scholar
  46. García-Cañaveras JC, Donato MT, Castell JV, Lahoz A (2012) Targeted profiling of circulating and hepatic bile acids in human, mouse, and rat using a UPLC-MRM-MS-validated method. J Lipid Res 53:2231–2241. doi:  https://doi.org/10.1194/jlr.D028803 PubMedPubMedCentralCrossRefGoogle Scholar
  47. Garrett WS, Gallini CA, Yatsunenko T et al (2010) Enterobacteriaceae act in concert with the gut microbiota to induce spontaneous and maternally transmitted colitis. Cell Host Microbe 8:292–300. doi:  https://doi.org/10.1016/j.chom.2010.08.004 PubMedPubMedCentralCrossRefGoogle Scholar
  48. Gibson GR (1990) Physiology and ecology of the sulphate-reducing bacteria. J Appl Bacteriol 69:769–797PubMedCrossRefGoogle Scholar
  49. Gibson SA, McFarlan C, Hay S, MacFarlane GT (1989) Significance of microflora in proteolysis in the colon. Appl Environ Microbiol 55:679–683PubMedPubMedCentralGoogle Scholar
  50. Gill SR, Pop M, Deboy RT et al (2006) Metagenomic analysis of the human distal gut microbiome. Science 312:1355–1359. doi:  https://doi.org/10.1126/science.1124234 PubMedPubMedCentralCrossRefGoogle Scholar
  51. Giurgescu C (2009) Are maternal cortisol levels related to preterm birth? J Obstet Gynecol Neonatal Nurs JOGNN 38:377–390. doi:  https://doi.org/10.1111/j.1552-6909.2009.01034.x PubMedCrossRefGoogle Scholar
  52. Guarner F, Malagelada J-R (2003) Gut flora in health and disease. Lancet 361(9356):512–519CrossRefGoogle Scholar
  53. Gustafsson BE, Daft FS, McDANIEL EG et al (1962) Effects of vitamin K-active compounds and intestinal microorganisms in vitamin K-deficient germfree rats. J Nutr 78:461–468PubMedCrossRefGoogle Scholar
  54. Gustafsson BE, Angelin B, Einarsson K, Gustafsson JA (1977) Effects of cholesterol feeding on synthesis and metabolism of cholesterol and bile acids in germfree rats. J Lipid Res 18:717–721PubMedGoogle Scholar
  55. Harris MA, Reddy CA, Carter GR (1976) Anaerobic bacteria from the large intestine of mice. Appl Environ Microbiol 31:907–912PubMedPubMedCentralGoogle Scholar
  56. Hayashi H, Sakamoto M, Benno Y (2002) Phylogenetic analysis of the human gut microbiota using 16S rDNA clone libraries and strictly anaerobic culture-based methods. Microbiol Immunol 46:535–548PubMedCrossRefGoogle Scholar
  57. Hayashi H, Sakamoto M, Kitahara M, Benno Y (2003) Molecular analysis of fecal microbiota in elderly individuals using 16S rDNA library and T-RFLP. Microbiol Immunol 47:557–570PubMedCrossRefGoogle Scholar
  58. Hayashi H, Takahashi R, Nishi T et al (2005) Molecular analysis of jejunal, ileal, caecal and recto-sigmoidal human colonic microbiota using 16S rRNA gene libraries and terminal restriction fragment length polymorphism. J Med Microbiol 54:1093–1101. doi:  https://doi.org/10.1099/jmm.0.45935-0 PubMedCrossRefGoogle Scholar
  59. Heberling CA, Dhurjati PS, Sasser M (2013) Hypothesis for a systems connectivity model of Autism Spectrum Disorder pathogenesis: links to gut bacteria, oxidative stress, and intestinal permeability. Med Hypotheses 80:264–270. doi:  https://doi.org/10.1016/j.mehy.2012.11.044 PubMedCrossRefGoogle Scholar
  60. Hehemann J-H, Correc G, Barbeyron T et al (2010) Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature 464:908–912. doi:  https://doi.org/10.1038/nature08937 PubMedCrossRefGoogle Scholar
  61. Hermanussen M, Gonder U, Jakobs C et al (2010) Patterns of free amino acids in German convenience food products: marked mismatch between label information and composition. Eur J Clin Nutr 64:88–98. doi:  https://doi.org/10.1038/ejcn.2009.116 PubMedCrossRefGoogle Scholar
  62. Hill MJ (1997) Intestinal flora and endogenous vitamin synthesis. Eur J Cancer Prev 6(Suppl 1):S43–S45Google Scholar
  63. Hooper LV, Bry L, Falk PG, Gordon JI (1998) Host-microbial symbiosis in the mammalian intestine: exploring an internal ecosystem. BioEssays 20(4):336–343. doi:  https://doi.org/10.1002/(SICI)1521-1878(199804)20:4<336::AID-BIES10>3.0.CO;2-3
  64. Hope ME, Hold GL, Kain R, El-Omar EM (2005) Sporadic colorectal cancer—role of the commensal microbiota. FEMS Microbiol Lett 244:1–7. doi:  https://doi.org/10.1016/j.femsle.2005.01.029 PubMedCrossRefGoogle Scholar
  65. Huizink AC, de Medina PGR, Mulder EJH et al (2002) Psychological measures of prenatal stress as predictors of infant temperament. J Am Acad Child Adolesc Psychiatry 41:1078–1085PubMedCrossRefGoogle Scholar
  66. Islami F, Kamangar F (2008) Helicobacter pylori and esophageal cancer risk: a meta-analysis. Cancer Prev Res Phila Pa 1:329–338. doi:  https://doi.org/10.1158/1940-6207.CAPR-08-0109 CrossRefGoogle Scholar
  67. Johansson MEV, Phillipson M, Petersson J et al (2008) The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc Natl Acad Sci USA 105:15064–15069. doi:  https://doi.org/10.1073/pnas.0803124105 PubMedPubMedCentralCrossRefGoogle Scholar
  68. Jones RS (1982) Tryptamine: a neuromodulator or neurotransmitter in mammalian brain? Prog Neurobiol 19:117–139PubMedCrossRefGoogle Scholar
  69. Jones BV, Begley M, Hill C et al (2008) Functional and comparative metagenomic analysis of bile salt hydrolase activity in the human gut microbiome. Proc Natl Acad Sci USA 105:13580–13585. doi:  https://doi.org/10.1073/pnas.0804437105 PubMedPubMedCentralCrossRefGoogle Scholar
  70. Juge N (2012) Microbial adhesins to gastrointestinal mucus. Trends Microbiol 20:30–39. doi:  https://doi.org/10.1016/j.tim.2011.10.001 PubMedCrossRefGoogle Scholar
  71. Kamada N, Nunez G (2013) Role of the gut microbiota in the development and function of lymphoid cells. J Immunol 190(4):1389–1395PubMedPubMedCentralCrossRefGoogle Scholar
  72. Kamada N, Chen GY, Inohara N, Núñez G (2013) Control of pathogens and pathobionts by the gut microbiota. Nat Immunol 14(7):685–690. doi:  https://doi.org/10.1038/ni.2608 PubMedPubMedCentralCrossRefGoogle Scholar
  73. Kanamori Y, Ishimaru K, Nanno M et al (1996) Identification of novel lymphoid tissues in murine intestinal mucosa where clusters of c-kit + IL-7R + Thy1 + lympho-hemopoietic progenitors develop. J Exp Med 184:1449–1459PubMedCrossRefGoogle Scholar
  74. Kanwar SS, Walia S, Sharma S (2016) Impact of probiotics and gut microbiota on host behavior. In: Garg N, Abdel-Aziz SM, Aeron A (eds) Microbes in food and health. Springer, Cham, pp 29–41. doi:  https://doi.org/10.1007/978-3-319-25277-3_2 Google Scholar
  75. Kaplan JL, Shi HN, Walker WA (2011) The role of microbes in developmental immunologic programming. Pediatr Res 69:465–472. doi:  https://doi.org/10.1203/PDR.0b013e318217638a PubMedCrossRefGoogle Scholar
  76. Keenan K, Gunthorpe D, Grace D (2007) Parsing the relations between SES and stress reactivity: examining individual differences in neonatal stress response. Infant Behav Dev 30:134–145. doi:  https://doi.org/10.1016/j.infbeh.2006.08.001 PubMedCrossRefGoogle Scholar
  77. Keenan K, Bartlett TQ, Nijland M et al (2013) Poor nutrition during pregnancy and lactation negatively affects neurodevelopment of the offspring: evidence from a translational primate model. Am J Clin Nutr 98:396–402. doi:  https://doi.org/10.3945/ajcn.112.040352 PubMedPubMedCentralCrossRefGoogle Scholar
  78. Kellogg TF (1971) Microbiological aspects of enterohepatic neutral sterol and bile acid metabolism. Fed Proc 30:1808–1814PubMedGoogle Scholar
  79. Kieper WC, Troy A, Burghardt JT et al (2005) Recent immune status determines the source of antigens that drive homeostatic T cell expansion. J Immunol Baltim Md 1950 174:3158–3163Google Scholar
  80. Kim J, Park W (2013) Indole inhibits bacterial quorum sensing signal transmission by interfering with quorum sensing regulator folding. Microbiology 159:2616–2625. doi:  https://doi.org/10.1099/mic.0.070615-0 PubMedCrossRefGoogle Scholar
  81. Klein RE, Arenales P, Delgado H et al (1976) Effects of maternal nutrition on fetal growth and infant development. Bull Pan Am Health Organ 10:301–306PubMedGoogle Scholar
  82. Koboziev I, Webb CR, Furr KL, Grisham MB (2014) Role of the enteric microbiota in intestinal homeostasis and inflammation. Free Radic Biol Med 68:122–133. doi:  https://doi.org/10.1016/j.freeradbiomed.2013.11.008 PubMedCrossRefGoogle Scholar
  83. Koenig JE, Spor A, Scalfone N et al (2011) Succession of microbial consortia in the developing infant gut microbiome. Proc Natl Acad Sci USA 108(Suppl 1):4578–4585. doi:  https://doi.org/10.1073/pnas.1000081107 PubMedCrossRefGoogle Scholar
  84. Koeth RA, Wang Z, Levison BS et al (2013) Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med 19:576–585. doi:  https://doi.org/10.1038/nm.3145 PubMedPubMedCentralCrossRefGoogle Scholar
  85. Kordalewska M, Markuszewski MJ (2015) Metabolomics in cardiovascular diseases. J Pharm Biomed Anal 113:121–136. doi:  https://doi.org/10.1016/j.jpba.2015.04.021 PubMedCrossRefGoogle Scholar
  86. Kostic AD, Gevers D, Pedamallu CS et al (2012) Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res 22:292–298. doi:  https://doi.org/10.1101/gr.126573.111 PubMedPubMedCentralCrossRefGoogle Scholar
  87. Kumar J, Kumar M, Gupta S et al (2016) An improved methodology to overcome key issues in human fecal metagenomic DNA extraction. Genom Proteom Bioinform 14:371–378. doi:  https://doi.org/10.1016/j.gpb.2016.06.002 CrossRefGoogle Scholar
  88. Kumar J, Kumar M, Pandey R, Chauhan NS (2017) Physiopathology and management of gluten-induced celiac disease: celiac disease J Food Sci 82:270–277. doi:  https://doi.org/10.1111/1750-3841.13612 PubMedCrossRefGoogle Scholar
  89. Kumar Mondal A, Kumar J, Pandey R et al (2017) Comparative genomics of host–symbiont and free-living Oceanobacillus species. Genome Biol Evol 9:1175–1182. doi:  https://doi.org/10.1093/gbe/evx076 PubMedPubMedCentralCrossRefGoogle Scholar
  90. Kunz C, Kuntz S, Rudloff S (2009) Intestinal flora. Adv Exp Med Biol 639:67–79. doi:  https://doi.org/10.1007/978-1-4020-8749-3_6 PubMedCrossRefGoogle Scholar
  91. Lajoie SF, Bank S, Miller TL, Wolin MJ (1988) Acetate production from hydrogen and [13C]carbon dioxide by the microflora of human feces. Appl Environ Microbiol 54:2723–2727PubMedPubMedCentralGoogle Scholar
  92. Lampe JW (2009) Is equol the key to the efficacy of soy foods? Am J Clin Nutr 89:1664S–1667S. doi:  https://doi.org/10.3945/ajcn.2009.26736T PubMedPubMedCentralCrossRefGoogle Scholar
  93. Landete JM, Arqués J, Medina M et al (2016) Bioactivation of phytoestrogens: intestinal bacteria and health. Crit Rev Food Sci Nutr 56:1826–1843. doi:  https://doi.org/10.1080/10408398.2013.789823 PubMedCrossRefGoogle Scholar
  94. LeBlanc JG, Milani C, de Giori GS et al (2013) Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Curr Opin Biotechnol 24:160–168. doi:  https://doi.org/10.1016/j.copbio.2012.08.005 PubMedCrossRefGoogle Scholar
  95. Leloup J, Fossing H, Kohls K et al (2009) Sulfate-reducing bacteria in marine sediment (Aarhus Bay, Denmark): abundance and diversity related to geochemical zonation. Environ Microbiol 11:1278–1291. doi:  https://doi.org/10.1111/j.1462-2920.2008.01855.x PubMedCrossRefGoogle Scholar
  96. Ley RE, Bäckhed F, Turnbaugh P et al (2005) Obesity alters gut microbial ecology. Proc Natl Acad Sci USA 102:11070–11075. doi:  https://doi.org/10.1073/pnas.0504978102 PubMedPubMedCentralCrossRefGoogle Scholar
  97. Ley RE, Peterson DA, Gordon JI (2006) Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124:837–848. doi:  https://doi.org/10.1016/j.cell.2006.02.017 PubMedCrossRefGoogle Scholar
  98. Lin L, Zhang J (2017) Role of intestinal microbiota and metabolites on gut homeostasis and human diseases. BMC Immunol 18(1):2. doi:  https://doi.org/10.1186/s12865-016-0187-3
  99. Lou HC, Hansen D, Nordentoft M et al (1994) Prenatal stressors of human life affect fetal brain development. Dev Med Child Neurol 36:826–832PubMedCrossRefGoogle Scholar
  100. Loubinoux J, Valente FMA, Pereira IAC et al (2002) Reclassification of the only species of the genus Desulfomonas, Desulfomonas pigra, as Desulfovibrio piger comb. nov. Int J Syst Evol Microbiol 52:1305–1308. doi:  https://doi.org/10.1099/00207713-52-4-1305 PubMedGoogle Scholar
  101. Louis P, Duncan SH, McCrae SI et al (2004) Restricted distribution of the butyrate kinase pathway among butyrate-producing bacteria from the human colon. J Bacteriol 186:2099–2106PubMedPubMedCentralCrossRefGoogle Scholar
  102. Louis P, Hold GL, Flint HJ (2014a) The gut microbiota, bacterial metabolites and colorectal cancer. Nat Rev Microbiol 12:661–672. doi:  https://doi.org/10.1038/nrmicro3344 PubMedCrossRefGoogle Scholar
  103. Louis P, Hold GL, Flint HJ (2014b) The gut microbiota, bacterial metabolites and colorectal cancer. Nat Rev Microbiol 12:661–672. doi:  https://doi.org/10.1038/nrmicro3344 PubMedCrossRefGoogle Scholar
  104. Lowe LP, Metzger BE, Lowe WL et al (2010) Inflammatory mediators and glucose in pregnancy: results from a subset of the Hyperglycemia and Adverse Pregnancy Outcome (HAPO) Study. J Clin Endocrinol Metab 95:5427–5434. doi:  https://doi.org/10.1210/jc.2010-1662 PubMedPubMedCentralCrossRefGoogle Scholar
  105. Macfarlane S, Macfarlane GT (2006) Composition and metabolic activities of bacterial biofilms colonizing food residues in the human gut. Appl Environ Microbiol 72:6204–6211. doi:  https://doi.org/10.1128/AEM.00754-06 PubMedPubMedCentralCrossRefGoogle Scholar
  106. Macfarlane GT, Cummings JH, Allison C (1986) Protein degradation by human intestinal bacteria. J Gen Microbiol 132:1647–1656. doi:  https://doi.org/10.1099/00221287-132-6-1647 PubMedGoogle Scholar
  107. Machiels K, Joossens M, Sabino J et al (2014) A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut 63:1275–1283. doi:  https://doi.org/10.1136/gutjnl-2013-304833 PubMedCrossRefGoogle Scholar
  108. Magnúsdóttir S, Ravcheev D, de Crécy-Lagard V, Thiele I (2015) Systematic genome assessment of B-vitamin biosynthesis suggests co-operation among gut microbes. Front Genet 6:148. doi:  https://doi.org/10.3389/fgene.2015.00148 PubMedPubMedCentralCrossRefGoogle Scholar
  109. Manach C, Scalbert A, Morand C et al (2004) Polyphenols: food sources and bioavailability. Am J Clin Nutr 79:727–747PubMedCrossRefGoogle Scholar
  110. Marín L, Miguélez EM, Villar CJ, Lombó F (2015) Bioavailability of dietary polyphenols and gut microbiota metabolism: antimicrobial properties. BioMed Res Int 2015:905215. doi:  https://doi.org/10.1155/2015/905215 PubMedPubMedCentralCrossRefGoogle Scholar
  111. Marteau P, Pochart P, Doré J et al (2001) Comparative study of bacterial groups within the human cecal and fecal microbiota. Appl Environ Microbiol 67:4939–4942PubMedPubMedCentralCrossRefGoogle Scholar
  112. Monika MKV, Ahmed V, Chauhan NS (2017) Human gut microbiome: an imperative element for human survival. Curr Trends Biomedical Eng Biosci 6(1):555680. doi:  https://doi.org/10.19080/CTBEB.2017.06.555680 Google Scholar
  113. Moroni F (1999) Tryptophan metabolism and brain function: focus on kynurenine and other indole metabolites. Eur J Pharmacol 375:87–100PubMedCrossRefGoogle Scholar
  114. Mortensen PB, Clausen MR (1996) Short-chain fatty acids in the human colon: relation to gastrointestinal health and disease. Scand J Gastroenterol Suppl 216:132–148PubMedCrossRefGoogle Scholar
  115. Muir JG, Yeow EGW, Keogh J et al (2004) Combining wheat bran with resistant starch has more beneficial effects on fecal indexes than does wheat bran alone. Am J Clin Nutr 79:1020–1028PubMedCrossRefGoogle Scholar
  116. Murri M, Leiva I, Gomez-Zumaquero JM et al (2013) Gut microbiota in children with type 1 diabetes differs from that in healthy children: a case–control study. BMC Med 11:46. doi:  https://doi.org/10.1186/1741-7015-11-46 PubMedPubMedCentralCrossRefGoogle Scholar
  117. Muyzer G, Stams AJM (2008) The ecology and biotechnology of sulphate-reducing bacteria. Nat Rev Microbiol 6:441–454. doi:  https://doi.org/10.1038/nrmicro1892 PubMedGoogle Scholar
  118. Neish AS (2009) Microbes in gastrointestinal health and disease. Gastroenterology 136:65–80. doi:  https://doi.org/10.1053/j.gastro.2008.10.080 PubMedCrossRefGoogle Scholar
  119. Norris V, Molina F, Gewirtz AT (2013) Hypothesis: bacteria control host appetites. J Bacteriol 195(3):411–416PubMedPubMedCentralCrossRefGoogle Scholar
  120. O’Hara AM, Shanahan F (2006) The gut flora as a forgotten organ. EMBO Rep 7:688–693. doi:  https://doi.org/10.1038/sj.embor.7400731 PubMedPubMedCentralCrossRefGoogle Scholar
  121. Ouwehand AC, Derrien M, de Vos W et al (2005) Prebiotics and other microbial substrates for gut functionality. Curr Opin Biotechnol 16:212–217. doi:  https://doi.org/10.1016/j.copbio.2005.01.007 PubMedCrossRefGoogle Scholar
  122. Peek RM, Blaser MJ (2002) Helicobacter pylori and gastrointestinal tract adenocarcinomas. Nat Rev Cancer 2:28–37. doi:  https://doi.org/10.1038/nrc703 PubMedCrossRefGoogle Scholar
  123. Penders J, Thijs C, Vink C et al (2006) Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics 118:511–521. doi:  https://doi.org/10.1542/peds.2005-2824 PubMedCrossRefGoogle Scholar
  124. Pérez-Jiménez J, Fezeu L, Touvier M et al (2011) Dietary intake of 337 polyphenols in French adults. Am J Clin Nutr 93:1220–1228. doi:  https://doi.org/10.3945/ajcn.110.007096 PubMedCrossRefGoogle Scholar
  125. Perry GH, Dominy NJ, Claw KG et al (2007) Diet and the evolution of human amylase gene copy number variation. Nat Genet 39:1256–1260. doi:  https://doi.org/10.1038/ng2123 PubMedPubMedCentralCrossRefGoogle Scholar
  126. Pickard JM, Maurice CF, Kinnebrew MA et al (2014) Rapid fucosylation of intestinal epithelium sustains host-commensal symbiosis in sickness. Nature 514:638–641. doi:  https://doi.org/10.1038/nature13823 PubMedPubMedCentralCrossRefGoogle Scholar
  127. Praveen P, Jordan F, Priami C, Morine MJ (2015) The role of breast-feeding in infant immune system: a systems perspective on the intestinal microbiome. Microbiome. doi:  https://doi.org/10.1186/s40168-015-0104-7 PubMedPubMedCentralGoogle Scholar
  128. Prentiss PG, Rosen H, Brown N et al (1961) The metabolism of choline by the germfree rat. Arch Biochem Biophys 94:424–429PubMedCrossRefGoogle Scholar
  129. Principi N, Esposito S (2016) Gut microbiota and central nervous system development. J Infect 73(6):536–546PubMedCrossRefGoogle Scholar
  130. Pryde SE, Duncan SH, Hold GL et al (2002) The microbiology of butyrate formation in the human colon. FEMS Microbiol Lett 217:133–139PubMedCrossRefGoogle Scholar
  131. Qin J, Li R, Raes J et al (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65. doi:  https://doi.org/10.1038/nature08821 PubMedPubMedCentralCrossRefGoogle Scholar
  132. Quartieri A, García-Villalba R, Amaretti A et al (2016) Detection of novel metabolites of flaxseed lignans in vitro and in vivo. Mol Nutr Food Res 60:1590–1601. doi:  https://doi.org/10.1002/mnfr.201500773 PubMedCrossRefGoogle Scholar
  133. Rechner AR, Smith MA, Kuhnle G et al (2004) Colonic metabolism of dietary polyphenols: influence of structure on microbial fermentation products. Free Radic Biol Med 36:212–225PubMedCrossRefGoogle Scholar
  134. Reichardt N, Duncan SH, Young P et al (2014) Phylogenetic distribution of three pathways for propionate production within the human gut microbiota. ISME J 8:1323–1335. doi:  https://doi.org/10.1038/ismej.2014.14 PubMedPubMedCentralCrossRefGoogle Scholar
  135. Reinhardt C, Bergentall M, Greiner TU et al (2012) Tissue factor and PAR1 promote microbiota-induced intestinal vascular remodelling. Nature 483:627–631. doi:  https://doi.org/10.1038/nature10893 PubMedCrossRefGoogle Scholar
  136. Ridlon JM, Kang D-J, Hylemon PB (2006) Bile salt biotransformations by human intestinal bacteria. J Lipid Res 47:241–259. doi:  https://doi.org/10.1194/jlr.R500013-JLR200 PubMedCrossRefGoogle Scholar
  137. Romano KA, Vivas EI, Amador-Noguez D, Rey FE (2015) Intestinal microbiota composition modulates choline bioavailability from diet and accumulation of the proatherogenic metabolite trimethylamine-N-oxide. mBio 6:e02481. doi:  https://doi.org/10.1128/mBio.02481-14 PubMedPubMedCentralCrossRefGoogle Scholar
  138. Rosenberg E, Zilber-Rosenberg I (2011) Symbiosis and development: the hologenome concept. Birth Defects Res Part C Embryo Today Rev 93:56–66. doi:  https://doi.org/10.1002/bdrc.20196 CrossRefGoogle Scholar
  139. Rossi M, Corradini C, Amaretti A et al (2005) Fermentation of fructooligosaccharides and inulin by bifidobacteria: a comparative study of pure and fecal cultures. Appl Environ Microbiol 71:6150–6158. doi:  https://doi.org/10.1128/AEM.71.10.6150-6158.2005 PubMedPubMedCentralCrossRefGoogle Scholar
  140. Ruma M, Horton A, Boggess K et al (2007) 221: Systemic inflammation: Its role in periodontal disease and preterm birth. Am J Obstet Gynecol 197:S73. doi:  https://doi.org/10.1016/j.ajog.2007.10.234 CrossRefGoogle Scholar
  141. Russell WR, Duncan SH, Scobbie L et al (2013) Major phenylpropanoid-derived metabolites in the human gut can arise from microbial fermentation of protein. Mol Nutr Food Res 57:523–535. doi:  https://doi.org/10.1002/mnfr.201200594 PubMedCrossRefGoogle Scholar
  142. Said HM (2013) Recent advances in transport of water-soluble vitamins in organs of the digestive system: a focus on the colon and the pancreas. Am J Physiol Gastrointest Liver Physiol 305:G601–G610. doi:  https://doi.org/10.1152/ajpgi.00231.2013 PubMedPubMedCentralCrossRefGoogle Scholar
  143. Sakata H, Yoshioka H, Fujita K (1985) Development of the intestinal flora in very low birth weight infants compared to normal full-term newborns. Eur J Pediatr 144:186–190PubMedCrossRefGoogle Scholar
  144. Samuel BS, Gordon JI (2006) A humanized gnotobiotic mouse model of host–archaeal–bacterial mutualism. Proc Natl Acad Sci USA 103:10011–10016. doi:  https://doi.org/10.1073/pnas.0602187103 PubMedPubMedCentralCrossRefGoogle Scholar
  145. Sandyk R (1992) L-tryptophan in neuropsychiatric disorders: a review. Int J Neurosci 67:127–144PubMedCrossRefGoogle Scholar
  146. Sapolsky RM, Romero LM, Munck AU (2000) How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr Rev 21:55–89. doi:  https://doi.org/10.1210/edrv.21.1.0389 PubMedGoogle Scholar
  147. Savage DC (1970) Associations of indigenous microorganisms with gastrointestinal mucosal epithelia. Am J Clin Nutr 23(11):1495–1501Google Scholar
  148. Scanlan PD, Shanahan F, Marchesi JR (2009) Culture-independent analysis of desulfovibrios in the human distal colon of healthy, colorectal cancer and polypectomized individuals. FEMS Microbiol Ecol 69:213–221. doi:  https://doi.org/10.1111/j.1574-6941.2009.00709.x PubMedCrossRefGoogle Scholar
  149. Schloss PD, Handelsman J (2004) Status of the microbial census. Microbiol Mol Biol Rev MMBR 68:686–691. doi:  https://doi.org/10.1128/MMBR.68.4.686-691.2004 PubMedCrossRefGoogle Scholar
  150. Schneider ML, Moore CF, Kraemer GW et al (2002) The impact of prenatal stress, fetal alcohol exposure, or both on development: perspectives from a primate model. Psychoneuroendocrinology 27:285–298PubMedCrossRefGoogle Scholar
  151. Scott KP, Martin JC, Campbell G et al (2006) Whole-genome transcription profiling reveals genes up-regulated by growth on fucose in the human gut bacterium “Roseburia inulinivorans”.J Bacteriol 188:4340–4349. doi:  https://doi.org/10.1128/JB.00137-06 PubMedPubMedCentralCrossRefGoogle Scholar
  152. Scott KP, Duncan SH, Flint HJ (2008) Dietary fibre and the gut microbiota. Nutr Bull 33:201–211. doi:  https://doi.org/10.1111/j.1467-310.2008.00706.x CrossRefGoogle Scholar
  153. Seksik P, Rigottier-Gois L, Gramet G et al (2003) Alterations of the dominant faecal bacterial groups in patients with Crohn’s disease of the colon. Gut 52:237–242PubMedPubMedCentralCrossRefGoogle Scholar
  154. Shanahan F (2013) The colonic microbiota in health and disease. Curr Opin Gastroenterol 29:49–54. doi:  https://doi.org/10.1097/MOG.0b013e32835a3493 PubMedCrossRefGoogle Scholar
  155. Sharma R, Young C, Neu J (2010) Molecular modulation of intestinal epithelial barrier: contribution of microbiota. J Biomed Biotechnol 2010:305879. doi:  https://doi.org/10.1155/2010/305879.
  156. Sjögren K, Engdahl C, Henning P et al (2012) The gut microbiota regulates bone mass in mice. J Bone Miner Res Off J Am Soc Bone Miner Res 27:1357–1367. doi:  https://doi.org/10.1002/jbmr.1588 CrossRefGoogle Scholar
  157. Smith EA, Macfarlane GT (1996) Enumeration of human colonic bacteria producing phenolic and indolic compounds: effects of pH, carbohydrate availability and retention time on dissimilatory aromatic amino acid metabolism. J Appl Bacteriol 81:288–302PubMedCrossRefGoogle Scholar
  158. Spencer MD, Hamp TJ, Reid RW et al (2011) Association between composition of the human gastrointestinal microbiome and development of fatty liver with choline deficiency. Gastroenterology 140:976–986. doi:  https://doi.org/10.1053/j.gastro.2010.11.049 PubMedCrossRefGoogle Scholar
  159. Stappenbeck TS, Hooper LV, Gordon JI (2002) Developmental regulation of intestinal angiogenesis by indigenous microbes via Paneth cells. Proc Natl Acad Sci USA 99:15451–15455. doi:  https://doi.org/10.1073/pnas.202604299 PubMedPubMedCentralCrossRefGoogle Scholar
  160. Suarez F, Furne J, Springfield J, Levitt M (1997) Insights into human colonic physiology obtained from the study of flatus composition. Am J Physiol 272:G1028–G1033PubMedGoogle Scholar
  161. Tana C, Umesaki Y, Imaoka A et al (2010) Altered profiles of intestinal microbiota and organic acids may be the origin of symptoms in irritable bowel syndrome. Neurogastroenterol Motil Off J Eur Gastrointest Motil Soc 22:512–519, e114–115. doi:  https://doi.org/10.1111/j.1365-2982.2009.01427.x Google Scholar
  162. Thadepalli H, Lou MA, Bach VT et al (1979) Microflora of the human small intestine. Am J Surg 138:845–850PubMedCrossRefGoogle Scholar
  163. Tomas-Barberan F, García-Villalba R, Quartieri A et al (2014) In vitro transformation of chlorogenic acid by human gut microbiota. Mol Nutr Food Res 58:1122–1131. doi:  https://doi.org/10.1002/mnfr.201300441 PubMedCrossRefGoogle Scholar
  164. Tomás-Barberán FA, González-Sarrías A, García-Villalba R et al (2017) Urolithins, the rescue of “old” metabolites to understand a “new” concept: Metabotypes as a nexus among phenolic metabolism, microbiota dysbiosis, and host health status. Mol Nutr Food Res. doi:  https://doi.org/10.1002/mnfr.201500901 Google Scholar
  165. Turnbaugh PJ, Ley RE, Mahowald MA et al (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027–1031. doi:  https://doi.org/10.1038/nature05414 PubMedCrossRefGoogle Scholar
  166. Turroni F, Ribbera A, Foroni E et al (2008) Human gut microbiota and bifidobacteria: from composition to functionality. Antonie Van Leeuwenhoek 94:35–50. doi:  https://doi.org/10.1007/s10482-008-9232-4 PubMedCrossRefGoogle Scholar
  167. Ubeda C, Djukovic A, Isaac S (2017) Roles of the intestinal microbiota in pathogen protection. Clin Transl Immunol 6(2):e128. doi:  https://doi.org/10.1038/cti.2017.2.
  168. Uematsu S, Fujimoto K, Jang MH et al (2008) Regulation of humoral and cellular gut immunity by lamina propria dendritic cells expressing toll-like receptor 5. Nat Immunol 9:769–776. doi:  https://doi.org/10.1038/ni.1622 PubMedCrossRefGoogle Scholar
  169. Vaishnava S, Yamamoto M, Severson KM et al (2011) The antibacterial lectin RegIIIgamma promotes the spatial segregation of microbiota and host in the intestine. Science 334:255–258. doi:  https://doi.org/10.1126/science.1209791 PubMedPubMedCentralCrossRefGoogle Scholar
  170. Vital M, Howe AC, Tiedje JM (2014) Revealing the bacterial butyrate synthesis pathways by analyzing (meta)genomic data. mBio 5:e00889. doi:  https://doi.org/10.1128/mBio. 00889–14PubMedPubMedCentralCrossRefGoogle Scholar
  171. Wadhwa PD, Sandman CA, Porto M et al (1993) The association between prenatal stress and infant birth weight and gestational age at birth: a prospective investigation. Am J Obstet Gynecol 169:858–865PubMedCrossRefGoogle Scholar
  172. Wall R, Ross RP, Ryan CA et al (2009) Role of gut microbiota in early infant development. Clin Med Pediatr 3:45–54PubMedPubMedCentralCrossRefGoogle Scholar
  173. Wang X, Heazlewood SP, Krause DO, Florin THJ (2003) Molecular characterization of the microbial species that colonize human ileal and colonic mucosa by using 16S rDNA sequence analysis. J Appl Microbiol 95:508–520. doi:  https://doi.org/10.1046/j.1365-2672.2003.02005.x PubMedCrossRefGoogle Scholar
  174. Wang J, Zhao H, Kong W et al (2010) Microcalorimetric assay on the antimicrobial property of five hydroxyanthraquinone derivatives in rhubarb (Rheum palmatum L.) to Bifidobacterium adolescentis. Phytomed Int J Phytother Phytopharm 17:684–689. doi:  https://doi.org/10.1016/j.phymed.2009.10.009 Google Scholar
  175. Wang Z, Klipfell E, Bennett BJ et al (2011) Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472:57–63. doi:  https://doi.org/10.1038/nature09922 PubMedPubMedCentralCrossRefGoogle Scholar
  176. Wauson EM, Lorente-Rodríguez A, Cobb MH (2013) Minireview: nutrient sensing by G protein-coupled receptors. Mol Endocrinol Baltim Md 27:1188–1197. doi:  https://doi.org/10.1210/me.2013-1100 CrossRefGoogle Scholar
  177. Weinstock M (1997) Does prenatal stress impair coping and regulation of hypothalamic–pituitary–adrenal axis? Neurosci Biobehav Rev 21:1–10PubMedCrossRefGoogle Scholar
  178. Weinstock M (2005) The potential influence of maternal stress hormones on development and mental health of the offspring. Brain Behav Immun 19:296–308. doi:  https://doi.org/10.1016/j.bbi.2004.09.006 PubMedCrossRefGoogle Scholar
  179. Weir TL, Manter DK, Sheflin AM et al (2013) Stool microbiome and metabolome differences between colorectal cancer patients and healthy adults. PloS One 8:e70803. doi:  https://doi.org/10.1371/journal.pone.0070803 PubMedPubMedCentralCrossRefGoogle Scholar
  180. Wikoff WR, Anfora AT, Liu J et al (2009) Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci USA 106:3698–3703. doi:  https://doi.org/10.1073/pnas.0812874106 PubMedPubMedCentralCrossRefGoogle Scholar
  181. Wolf PG, Biswas A, Morales SE et al (2016) H2 metabolism is widespread and diverse among human colonic microbes. Gut Microbes 7:235–245. doi:  https://doi.org/10.1080/19490976.2016.1182288 PubMedPubMedCentralCrossRefGoogle Scholar
  182. Woollett LA, Buckley DD, Yao L et al (2003) Effect of ursodeoxycholic acid on cholesterol absorption and metabolism in humans. J Lipid Res 44:935–942. doi:  https://doi.org/10.1194/jlr.M200478-JLR200 PubMedCrossRefGoogle Scholar
  183. Xu J, Gordon JI (2003) Honor thy symbionts. Proc Natl Acad Sci USA 100:10452–10459. doi:  https://doi.org/10.1073/pnas.1734063100 PubMedPubMedCentralCrossRefGoogle Scholar
  184. Yang EV, Glaser R (2002) Stress-induced immunomodulation and the implications for health. Int Immunopharmacol 2:315–324PubMedCrossRefGoogle Scholar
  185. Yeoh N, Burton JP, Suppiah P et al (2013) The role of the microbiome in rheumatic diseases. Curr Rheumatol Rep 15:314. doi:  https://doi.org/10.1007/s11926-012-0314-y PubMedCrossRefGoogle Scholar
  186. Yu LC, Wang JT, Wei SC, Ni YH (2012) Host-microbial interactions and regulation of intestinal epithelial barrier function: from physiology to pathology. World J Gastrointest Pathophysiol 3(1):27PubMedPubMedCentralCrossRefGoogle Scholar
  187. Zelante T, Iannitti RG, Cunha C et al (2013) Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity 39:372–385. doi:  https://doi.org/10.1016/j.immuni.2013.08.003 PubMedCrossRefGoogle Scholar
  188. Zhang Y-J, Li S, Gan R-Y et al (2015) Impacts of gut bacteria on human health and diseases. Int J Mol Sci 16:7493–7519. doi:  https://doi.org/10.3390/ijms16047493 PubMedPubMedCentralCrossRefGoogle Scholar
  189. Zijlmans MAC, Korpela K, Riksen-Walraven JM et al (2015) Maternal prenatal stress is associated with the infant intestinal microbiota. Psychoneuroendocrinology 53:233–245. doi:  https://doi.org/10.1016/j.psyneuen.2015.01.006 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Monika Yadav
    • 1
  • Manoj Kumar Verma
    • 1
  • Nar Singh Chauhan
    • 1
    Email author
  1. 1.Department of BiochemistryMaharshi Dayanand UniversityRohtakIndia

Personalised recommendations