Advertisement

Archives of Microbiology

, Volume 200, Issue 2, pp 237–253 | Cite as

Antimicrobial metabolites from Saraca asoca impairs the membrane transport system and quorum-sensing system in Pseudomonas aeruginosa

  • Preeti Jain
  • Amit Nale
  • Rajesh Dabur
Original Paper

Abstract

This study was conducted to explore the antimicrobial mechanism of metabolites from Saraca asoca (SA1) using differential proteomics and metabolic profile of Pseudomonas aeruginosa after treatment with effective sub-MIC dose of 312 µg/mL. SA1 fraction was found to contain antibacterial metabolites catechol, protocatechuic acid, and epigallocatechin gallate. Proteome analysis revealed 33 differentially expressed proteins after SA1 treatment. Protein network analysis showed that SA1 treatment upregulated the DNA topological and metabolic processes. Furthermore, it revealed that T2SS, cellular component biogenesis, and response to chemical stimuli were inhibited by SA1 treatment, supported by down-regulated Na+/H+ antiporter, SdeX, ompK, and trbD proteins. Statistical analysis of mass data revealed the altered level of 20 metabolites includes HSLs, PQS, rhamnolipid, and pyocyanin. Proteome and metabolome results showed that treatment impaired cell membrane functions and quorum-sensing system. It was further confirmed by increased MDA (3.95 fold), and rhamnolipids (4.3 fold) production and, therefore, oxidative stress (36.9%) after SA1 treatment.

Keywords

Protocatechuic acid Epigallocatechin gallate HPLC-QTOFMS Proteomics Metabolomics Antimicrobial mechanism of action 

Notes

Acknowledgements

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Compliance with ethical standards

Conflict of interest

Authors declare that they have no conflict of interest. All persons designated as authors are qualified for authorship.

Ethical approval

This article does not contain any studies with animals performed by any of the authors.

References

  1. Abram V, Berlec B, Ota A, Šentjurc M, Blatnik P, Ulrih NP (2013) Effect of flavonoid structure on the fluidity of model lipid membranes. Food Chem 139:804–813CrossRefPubMedGoogle Scholar
  2. Akiyama H, Fujii K, Yamasaki O, Oono T, Iwatsuki K (2001) Antibacterial action of several tannins against Staphylococcus aureus. J Antimicrob Chemother 48:487–491CrossRefPubMedGoogle Scholar
  3. Bugg TD, Braddick D, Dowson CG, Roper DI (2011) Bacterial cell wall assembly: still an attractive antibacterial target. Trends Biotechnol 29:167–173CrossRefPubMedGoogle Scholar
  4. Chao Y, Zhang T (2011) Optimization of fixation methods for observation of bacterial cell morphology and surface ultra structures by atomic force microscopy. Appl Microbiol Biotechnol 92:381–392CrossRefPubMedPubMedCentralGoogle Scholar
  5. Dabur R, Sharma GL (2002) Studies on antimycotic properties of Datura metel. J Ethnopharmacol 80:193–197CrossRefGoogle Scholar
  6. Dabur R, Gupta A, Mandal TK, Singh DD, Bajpai V, Gurav AM, Lavekar GS (2007) Antimicrobial activity of some Indian medicinal plants. Afr J Tradit Complement Altern Med 4:313–318CrossRefPubMedPubMedCentralGoogle Scholar
  7. Dibrov P, Fliegel L (1998) Comparative molecular analysis of Na+/H+ exchangers: a unified model for Na+/H+ antiport? FEBS Lett 424:1–5CrossRefPubMedGoogle Scholar
  8. Doménech-Sánchez A, Martínez-Martínez L, Hernández-Allés S, del Carmen Conejo M, Pascual Á, Tomás JM, Albertí S, Benedí VJ (2003) Role of Klebsiella pneumoniae OmpK35 porin in antimicrobial resistance. Antimicrob Agents Chemother 47:3332–3335CrossRefPubMedPubMedCentralGoogle Scholar
  9. El Zoeiby A, Sanschagrin F, Levesque RC (2003) Structure and function of the Mur enzymes: development of novel inhibitors. Mol Microbiol 47:1–12CrossRefPubMedGoogle Scholar
  10. Gotoh Y, Eguchi Y, Watanabe T, Okamoto S, Doi A, Utsumi R (2010) Two-component signal transduction as potential drug targets in pathogenic bacteria. Curr Opin Microbiol 13:232–239CrossRefPubMedGoogle Scholar
  11. Gunther NW, Nunez A, Fett W, Solaiman DK (2005) Production of rhamnolipids by Pseudomonas chlororaphis, a nonpathogenic bacterium. Appl Environ Microbiol 71:12288–12293CrossRefGoogle Scholar
  12. Hong R, Kang TY, Michels CA, Gadura N (2012) Membrane lipid peroxidation in copper alloy-mediated contact killing of Escherichia coli. Appl Environ Microbiol 78:1776–1784CrossRefPubMedPubMedCentralGoogle Scholar
  13. Ikigai H, Nakae T, Hara Y, Shimamura T (1993) Bactericidal catechins damage the lipid bilayer. BBA Biomembr 1147:132–136CrossRefGoogle Scholar
  14. Jayaraman P, Sakharkar MK, Lim CS, Tang TH, Sakharkar KR (2010) Activity and interactions of antibiotic and phytochemical combinations against Pseudomonas aeruginosa in vitro. Int J Biol Sci 6:556–568CrossRefPubMedPubMedCentralGoogle Scholar
  15. Jeong EY, Jeon JH, Lee CH, Lee HS (2009) Antimicrobial activity of catechol isolated from Diospyros kaki Thunb. roots and its derivatives toward intestinal bacteria. Food Chem 115:1006–1010CrossRefGoogle Scholar
  16. Joshi SG, Cooper M, Yost A, Paff M, Ercan UK, Fridman G, Friedman G, Fridman A, Brooks AD (2011) Nonthermal dielectric-barrier discharge plasma-induced inactivation involves oxidative DNA damage and membrane lipid peroxidation in Escherichia coli. Antimicrob Agents Chemother 55:1053–1062CrossRefPubMedPubMedCentralGoogle Scholar
  17. Kocaçalışkan I, Talan I, Terzi I (2006) Antimicrobial activity of catechol and pyrogallol as allelochemicals. Zeitschrift für Naturforschung C 61:639–642Google Scholar
  18. Krishnan T, Yin WF, Chan KG (2012) Inhibition of quorum sensing-controlled virulence factor production in Pseudomonas aeruginosa PAO1 by Ayurveda spice clove (Syzygium aromaticum) bud extract. Sensors 12:4016–4030CrossRefPubMedPubMedCentralGoogle Scholar
  19. Kumari S, Jain P, Sharma B, Kadyan P, Dabur R (2015) In vitro antifungal activity and probable fungicidal mechanism of aqueous extract of Barleria grandiflora. Appl Biochem Biotechnol 175:3571–3584CrossRefPubMedGoogle Scholar
  20. Kuzuhara T, Sei Y, Yamaguchi K, Suganuma M, Fujiki H (2006) DNA and RNA as new binding targets of green tea catechins. J Biol Chem 281:17446–17456CrossRefPubMedGoogle Scholar
  21. Kuzuhara T, Tanabe A, Sei Y, Yamaguchi K, Suganuma M, Fujiki H (2007) Synergistic effects of multiple treatments, and both DNA and RNA direct bindings on, green tea catechins. Mol Carcinog 46:640–645CrossRefPubMedGoogle Scholar
  22. Lee YS, Han CH, Kang SH, Lee SJ, Kim SW, Shin OR, Sim YC, Lee SJ, Cho YH (2005) Synergistic effect between catechin and ciprofloxacin on chronic bacterial prostatitis rat model. Int J Urol 12:383–389CrossRefPubMedGoogle Scholar
  23. Li PL, Hwang I, Miyagi H, True H, Farrand SK (1999) Essential components of the Ti plasmid trb system, a type IV macromolecular transporter. J Bacteriol 181:5033–5041PubMedPubMedCentralGoogle Scholar
  24. Liu X, Li J, Wang Y, Li T, Zhao J, Zhang C (2013) Green tea polyphenols function as prooxidants to inhibit Pseudomonas aeruginosa and induce the expression of oxidative stress-related genes. Folia Microbiol 58:211–217CrossRefGoogle Scholar
  25. Maness PC, Smolinski S, Blake DM, Huang Z, Wolfrum EJ, Jacoby WA (1999) Bactericidal activity of photocatalytic TiO2 reaction: toward an understanding of its killing mechanism. Appl Environ Microbiol 65:4094–4098PubMedPubMedCentralGoogle Scholar
  26. Minagawa S, Inami H, Kato T, Sawada S, Yasuki T, Miyairi S, Horikawa M, Okuda J, Gotoh N (2012) RND type efflux pump system MexAB-OprM of Pseudomonas aeruginosa selects bacterial languages, 3-oxo-acyl-homoserine lactones, for cell-to-cell communication. BMC Microbiol 12:1–10CrossRefGoogle Scholar
  27. Mittal A, Kadyan P, Gahlaut A, Dabur R (2013) Nontargeted identification of the phenolic and other compounds of Saraca asoca by high performance liquid chromatography–positive electrospray ionization and quadrupole time-of-flight mass spectrometry. ISRN Pharm.  https://doi.org/10.1155/2013/293935 PubMedPubMedCentralGoogle Scholar
  28. Nakayama M, Shimatani K, Ozawa T, Shigemune N, Tomiyama D, Yui K, Katsuki M, Ikeda K, Nonaka A, Miyamoto T (2015) Mechanism for the antibacterial action of epigallocatechin gallate (EGCg) on Bacillus subtilis. Biosci Biotechnol Biochem 79:845–854CrossRefPubMedGoogle Scholar
  29. Odani T, Tanizawa H, Takino Y (1983) Studies on the absorption, distribution, excretion and metabolism of ginseng saponins. II. The absorption, distribution and excretion of ginsenoside Rg1 in the rat. Chem Pharm Bull 31:292–298CrossRefPubMedGoogle Scholar
  30. Okada K, Minehira M, Zhu X, Suzuki K, Nakagawa T, Matsuda H, Kawamukai M (1997) The ispB gene encoding octaprenyl diphosphate synthase is essential for growth of Escherichia coli. J Bacteriol 179:3058–3060CrossRefPubMedPubMedCentralGoogle Scholar
  31. Pamp SJ, Tolker-Nielsen T (2007) Multiple roles of biosurfactants in structural biofilm development by Pseudomonas aeruginosa. J Bacteriol 189:2531–2539CrossRefPubMedPubMedCentralGoogle Scholar
  32. Schweigert N, Zehnder AJ, Eggen RI (2001) Chemical properties of catechols and their molecular modes of toxic action in cells, from microorganisms to mammals. Environ Microbiol 3:81–91CrossRefPubMedGoogle Scholar
  33. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504CrossRefPubMedPubMedCentralGoogle Scholar
  34. Shirolkar A, Gahlaut A, Chhillar AK, Dabur R (2013) Quantitative analysis of catechins in Saraca asoca and correlation with antimicrobial activity. J Pharm Anal 3:421–428CrossRefPubMedPubMedCentralGoogle Scholar
  35. Smeesters PR, McMillan DJ, Sriprakash KS (2010) The streptococcal M protein: a highly versatile molecule. Trends Microbiol 18:275–282CrossRefPubMedGoogle Scholar
  36. Toyofuku M, Nomura N, Fujii T, Takaya N, Maseda H, Sawada I, Nakajima T, Uchiyama H (2007) Quorum sensing regulates denitrification in Pseudomonas aeruginosa PAO1. J Bacteriol 189:4969–4972CrossRefPubMedPubMedCentralGoogle Scholar
  37. Van Alst NE, Picardo KF, Iglewski BH, Haidaris CG (2007) Nitrate sensing and metabolism modulate motility, biofilm formation, and virulence in Pseudomonas aeruginosa. Infect Immun 75:3780–3790CrossRefPubMedPubMedCentralGoogle Scholar
  38. Xie Y, Yang W, Tang F, Chen X, Ren L (2015) Antibacterial activities of flavonoids: structure–activity relationship and mechanism. Curr Med Chem 22:132–149CrossRefPubMedGoogle Scholar
  39. Xing J, Wang G, Zhang Q, Liu X, Gu Z, Zhang H, Chen YQ, Chen W (2015) Determining antioxidant activities of lactobacilli cell-free supernatants by cellular antioxidant assay: a comparison with traditional methods. PLoS One 10:e0119058CrossRefPubMedPubMedCentralGoogle Scholar
  40. Yates EA, Philipp B, Buckley C, Atkinson S, Chhabra SR, Sockett RE, Goldner M, Dessaux Y, Cámara M, Smith H, Williams P (2002) N-Acylhomoserine lactones undergo lactonolysis in a pH-, temperature-, and acyl chain length-dependent manner during growth of Yersinia pseudotuberculosis and Pseudomonas aeruginosa. Infect Immun 70:5635–5646CrossRefPubMedPubMedCentralGoogle Scholar
  41. Yi SM, Zhu JL, Fu LL, Li JR (2010) Tea polyphenols inhibit Pseudomonas aeruginosa through damage to the cell membrane. Int J Food Microbiol 144:111–117CrossRefPubMedGoogle Scholar
  42. Yin MC, Chao CY (2008) Anti-Campylobacter, anti-aerobic, and anti-oxidative effects of roselle calyx extract and protocatechuic acid in ground beef. Int J Food Microbiol 127:73–77CrossRefPubMedGoogle Scholar
  43. Zhao WH, Hu ZQ, Okubo S, Hara Y, Shimamura T (2001) Mechanism of synergy between epigallocatechin gallate and β-lactams against methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 45:1737–1742CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of BiochemistryMaharishi Dayanand UniversityRohtakIndia

Personalised recommendations