Fecal microbiota of lambs fed purple prairie clover (Dalea purpurea Vent.) and alfalfa (Medicago sativa)

  • Qianqian Huang
  • Devin B. Holman
  • Trevor Alexander
  • Tianming Hu
  • Long Jin
  • Zhongjun Xu
  • Tim A. McAllister
  • Surya Acharya
  • Guoqi Zhao
  • Yuxi Wang
Original Paper

Abstract

The present study assessed the effect of purple prairie clover (PPC) and PPC condensed tannins (CT) on the fecal microbiota of lambs using high-throughput 16S rRNA gene pyrosequencing. A total of 18 individual lambs were randomly divided into three groups and fed either green chop alfalfa (Alf), a 40:60 (DM basis; Mix) mixture of Alf and PPC, or Mix supplemented with polyethylene glycol (Mix-P) for 18 days. Fecal samples were collected on days 13 through 18 using digital rectal retrieval. The DNA of fecal samples was extracted and the microbial 16S rRNA gene amplicons were sequenced using 454 pyrosequencing. Regardless of diet, the bacterial community was dominated by Firmicutes and Bacteroidetes with many sequences unclassified at the genus level. Forage type and CT had no effect on the fecal microbial composition at the phylum level or on α-diversity. Compared to the Alf diet, the Mix diet reduced the relative abundance of Akkermansia (P = 0.03) and Asteroleplasma (P = 0.05). Fecal microbial populations in Alf and Mix-P clustered separately from each other when assessed using unweighted UniFrac (P < 0.05). These results indicate that PPC CT up to 36 g/kg DM in the diet had no major effect on fecal microbial flora at the phyla level and exerted only minor effects on the genera composition of fecal microbiota in lambs.

Keywords

Purple prairie clover Condensed tannins 454 Pyrosequencing Gut microbiota 

References

  1. Açik MN, Cetinkaya B (2006) Heterogeneity of Campylobacter jejuni and Campylobacter coli strains from healthy sheep. Vet Microbiol 115(4):370–375CrossRefPubMedGoogle Scholar
  2. Axling U, Olsson C, Xu J, Fernandez C, Larsson S, Ström K, Ahrné S, Holm C, Molin G, Berger K (2012) Green tea powder and Lactobacillus plantarum affect gut microbiota, lipid metabolism and inflammation in high-fat fed C57BL/6J mice. Nutr Metab 9:105CrossRefGoogle Scholar
  3. Bae HD, McAllister TA, Yanke J, Cheng KJ, Muir AD (1993) Effects of condensed tannins on endoglucanase activity and filter paper digestion by Fibrobacter succinogenes S85. Appl Environ Microbiol 59:2131–2138Google Scholar
  4. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B Methodol 75(1):289–300Google Scholar
  5. Callaway TR, Dowd SE, Edrington TS, Anderson RC, Krueger N, Bauer N, Kononoff PJ, Nisbet DJ (2010) Evaluation of bacterial diversity in the rumen and feces of cattle fed different levels of dried distillers grains plus solubles using bacterial tag-encoded FLX amplicon pyrosequencing. J Anim Sci 88:3977–3983CrossRefPubMedGoogle Scholar
  6. Canadian Council on Animal Care (2009) The care and use of farm animals in research, teaching and testing. CCAC, Ottawa, pp 12–15Google Scholar
  7. Caporaso JG, Bittinger K, Bushman FD, DeSantis TZ, Andersen GL, Knight R (2010a) PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics 26(2):266–267CrossRefPubMedGoogle Scholar
  8. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK et al (2010b) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7(5):335–336CrossRefPubMedPubMedCentralGoogle Scholar
  9. Daillère R, Vétizou M, Waldschmitt N, Yamazaki T, Isnard C, Poirier-Colame V et al (2016) Enterococcus hirae and Barnesiella intestinihominis facilitate cyclophosphamide-induced therapeutic immunomodulatory effects. Immunity 45(4):931CrossRefPubMedGoogle Scholar
  10. Dao MC, Everard A, Aronwisnewsky J, Sokolovska N, Prifti E, Verger EO et al (2016) Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut 65(3):426CrossRefPubMedGoogle Scholar
  11. Dowd SE, Callaway TR, Wolcott RD, Sun Y, McKeehan T, Hagevoort RG, Edrington TS (2008) Evaluation of the bacterial diversity in the feces of cattle using 16S rDNA bacterial tag encoded FLX amplicon pyrosequencing (bTEFAP). BMC Microbiol 8:125CrossRefPubMedPubMedCentralGoogle Scholar
  12. Dudonné S, Varin TV, Anhê FF, Dubé P, Roy D, Pilon G, Marette A, Levy E, Jacquot C, Urdaci M et al (2015) Modulatory effects of a cranberry extract co-supplementation with Bacillus subtilis CU1 probiotic on phenolic compounds bioavailability and gut microbiota composition in high-fat diet-fed mice. Pharmanutrition 3:89–100CrossRefGoogle Scholar
  13. Durso LM, Harhay GP, Smith TP, Bono JL, Desantis TZ, Harhay DM, Andersen GL, Keen JE, Laegreid WW, Clawson ML (2010) Animal-to-animal variation in fecal microbial diversity among beef cattle. Appl Environ Microbiol 76:4858–4862CrossRefPubMedPubMedCentralGoogle Scholar
  14. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461CrossRefPubMedGoogle Scholar
  15. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200CrossRefPubMedPubMedCentralGoogle Scholar
  16. Everard A, Belzer C, Geurts L et al (2013) Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci USA 110:9066–9071CrossRefPubMedPubMedCentralGoogle Scholar
  17. Faith DP (1993) Conservation evaluation and phylogenetic diversity. Biol Conserv 61:1–10CrossRefGoogle Scholar
  18. Flint HJ, Duncan SH, Scott KP, Louis P (2007) Interactions and competition within the microbial community of the human colon: links between diet and health. Environ Microbiol 9:1101–1111CrossRefPubMedGoogle Scholar
  19. Ganesh BP, Klopfleisch R, Loh G, Blaut M (2013) Commensal Akkermansia muciniphila exacerbates Gut inflammation in Salmonella typhimurium-infected gnotobiotic mice. PLoS One 8(9):e74963CrossRefPubMedPubMedCentralGoogle Scholar
  20. Grauke LJ, Udva IT, Yoon JW, Hunt CW, Williams CJ, Hovde CJ (2002) Gastrointestinal-tract location of Escherichia coli O157:H7 in ruminants. Appl Environ Microbiol 68(5):2269–2277CrossRefPubMedPubMedCentralGoogle Scholar
  21. Gunderson J, McCutchan T, Sogin M (1986) Sequence of the small subunit ribosomal RNA gene expressed in the bloodstream stages of Plasmodium berghei: evolutionary implications. J protozool 33:525–529CrossRefPubMedGoogle Scholar
  22. Hamady M, Knight R (2009) Microbial community profiling for human microbiome projects: tools, techniques, and challenges. Genome Res 19:1141–1152CrossRefPubMedPubMedCentralGoogle Scholar
  23. Holman DB, Chénier MR (2014) Temporal changes and the effect of subtherapeutic concentrations of antibiotics in the gut microbiota of swine. FEMS Microbiol Ecol 90(3):599–608CrossRefPubMedGoogle Scholar
  24. Huang QQ, Jin L, Xu Z, Barbieria LR, Acharyaa S, Hu TM, Stanford K, McAllister TA, Wang Y (2015) Effects of purple prairie clover (Dalea purpurea Vent.) on feed intake, nutrient digestibility and faecal shedding of Escherichia coli O157:H7 in lambs. Anim Feed Sci Technol 207:51–61CrossRefGoogle Scholar
  25. Huang QQ, Hu TM, Xu Z, Long L, McAllister TA, Acharya S, Zeller W, Hardcastle E, Drake C, Mueller-Harvey I, Wang Y (2017) Structural composition and protein precipitation capacity of condensed tannins from purple prairie clover (Dalea purpurea Vent.). J Anim Sci 95(Suppl 4):141CrossRefGoogle Scholar
  26. Hume ID (1997) Fermentation in the hindgut of mammals. In: Mackie RI, White BA (eds) Gastrointestinal microbiology. Chapman and Hall, New York, pp 84–115CrossRefGoogle Scholar
  27. Ilmberger N, Güllert S, Dannenberg J, Rabausch U, Torres J, Wemheuer B, Alawi M, Poehlein A, Chow J, Turaev D, Rattei T, Schmeisser C, Salomon J, Olsen PB, Daniel R, Grundhoff A, Borchert MS, Streit WR (2014) A comparative metagenome survey of the fecal microbiota of a breast- and a plant-fed Asian elephant reveals an unexpectedly high diversity of glycoside hydrolase family enzymes. PLoS One 9(9):e106707CrossRefPubMedPubMedCentralGoogle Scholar
  28. Inglis GD, Morck DW, McAllister TA, Entz T, Olson ME, Yanke LJ, Read RR (2006) Temporal prevalence of antimicrobial resistance in Campylobacter spp. from beef cattle in Alberta feedlots. Appl Environ Microbiol 72(6):4088–4095CrossRefPubMedPubMedCentralGoogle Scholar
  29. Jakhesara S, Koringa P, Ramani U, Ahir V, Tripathi A, Soni P, Singh K, Bhatt V, Patel J, Patel M (2010) Comparative study of tannin challenged rumen microbiome in goat using high throughput sequencing technology. Dev Microbiol Mol Biol 1:95–106Google Scholar
  30. Jin L, Wang Y, Iwaasa AD, Xu Z, Li Y, Schellenberg MP, Liu XL, McAllister TA, Stanford K (2015) Purple prairie clover (Dalea purpurea Vent) reduces fecal shedding of Escherichia coli in pastured cattle. J Food Prot 78(8):1434–1441CrossRefPubMedGoogle Scholar
  31. Jones JA, McAllister TA, Muir AD, Cheng KJ (1994) Effects of sanfoin (Onobrychis vicifolia Scop.) condensed tannins on growth and proteolysis by four strains of ruminal bacteria. Appl Environ Microbiol 60:1374–1378PubMedPubMedCentralGoogle Scholar
  32. Kim M, Wells JE (2016) A meta-analysis of bacterial diversity in the feces of cattle. Curr Microbiol 72:145–151CrossRefPubMedGoogle Scholar
  33. Kim M, Kim J, Kuehn L, Bono JL, Berry ED, Kalchayanand N, Freetly HC, Benson AK, Wells JE (2014) Investigation of bacterial diversity in the feces of cattle fed different diets. J Anim Sci 92:683–694CrossRefPubMedGoogle Scholar
  34. Lee HC, Jenner AM, Low CS, Lee YK (2006) Effect of tea phenolics and their aromatic fecal bacterial metabolites on intestinal microbiota. Res Microbiol 157(9):876–884CrossRefPubMedGoogle Scholar
  35. Ley RE, Hamady M, Lozupone C, Turnbaugh PJ, Ramey RR, Bircher JS, Schlegel ML, Tucker TA, Schrenzel MD, Knight R, Gordon JI (2008) Evolution of mammals and their gut microbes. Science 320:1647–1651CrossRefPubMedPubMedCentralGoogle Scholar
  36. Li Y, Iwaasa A, Wang Y, Jin L, Han G, Zhao M (2014) Condensed tannins concentration of selected prairie legume forages as affected by phenological stages during two consecutive growth seasons in western Canada. Can J Plant Sci 94:817–826CrossRefGoogle Scholar
  37. Liu XL, Hao YQ, Jin L, Xu ZJ, McAllister TA, Wang Y (2013) Anti-Escherichia coli O157:H7 properties of purple prairie clover and sainfoin condensed tannins. Molecules 18:2183–2199CrossRefPubMedGoogle Scholar
  38. Lloyd SK, Ritchie LE, Hicks KK, Azcarate-Peril MA, Turner ND (2016) Modulation of colonic microbiota populations by polyphenolic containing sorghum brans may protect against development of metabolic disease. FASEB 30(1 Suppl):683.4Google Scholar
  39. Logan JM, Burnens A, Linton D, Lawson AJ, Stanley J (2000) Campylobacter lanienae sp. nov., a new species isolated from workers in an abattoir. Int J Syst Evol Microbiol 50(2):865–872CrossRefPubMedGoogle Scholar
  40. Lozupone C, Knight R (2005) UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 71:8228–8235CrossRefPubMedPubMedCentralGoogle Scholar
  41. Makkar HP, Blümmel M, Becker K (1995) Formation of complexes between polyvinyl pyrrolidones or polyethylene glycols and tannins, and their implication in gas production and true digestibility in in vitro techniques. Br J Nutr 73:897–913CrossRefPubMedGoogle Scholar
  42. Mao S, Zhang M, Liu J, Zhu W (2015) Characterising the bacterial microbiota across the gastrointestinal tracts of dairy cattle: membership and potential function. Sci Rep 5:16116CrossRefPubMedPubMedCentralGoogle Scholar
  43. McAllister TA, Bae HD, Yank LJ, Cheng KJ, Muir AD (1993) Effect of condensed tannins on the cellulolytic activity of Fibrobacter succinogenes S85. In: Proceedings of the world conference on animal production, vol. 36, Edmonton, Canada, pp 66–67Google Scholar
  44. Min BR, Attwood GT, Reilly K, Sun W, Peters JS, Barry TN, McNabb WC (2002) Lotus corniculatus condensed tannins decrease in vivo populations of proteolytic bacteria and affect nitrogen metabolism in the rumen of sheep. Can J Microbiol 48:911–921CrossRefPubMedGoogle Scholar
  45. Min BR, Barry TN, Attwood GT, McNabb WC (2003) The effect of condensed tannins on the nutrition and health of ruminants fed fresh temperate forages: a review. Anim Feed Sci Technol 105:3–19CrossRefGoogle Scholar
  46. Min BR, Attwood GT, McNabb WC, Molan AL, Barry TN (2005) The effect of condensed tannins from Lotus corniculatus on the proteolytic activities and growth of rumen bacteria. Anim Feed Sci Technol 121:45–58CrossRefGoogle Scholar
  47. Min BR, Solaiman S, Sange R, Eun JS (2014) Gastrointestinal bacterial and Methanogenic archaea diversity dynamics associated with condensed tannins-containing pine bark diet in goats using 16S rDNA amplicon pyrosequencing. Int J Microbiol 4:1–11CrossRefGoogle Scholar
  48. Morgavi DP, Rathahao-Paris E, Popova M, Boccard J, Nielsen KF, Boudra H (2015) Rumen microbial communities influence metabolic phenotypes in lambs. Front Microbiol 6:1060CrossRefPubMedPubMedCentralGoogle Scholar
  49. Mueller-Harvey I (2006) Unravelling the conundrum of tannins in animal nutrition and health. J Sci Food Agric 86:2010–2037CrossRefGoogle Scholar
  50. Navas-Molina JA, Peralta-Sanchez JM, Gonzalez A et al (2013) Advancing our understanding of the human microbiome using QIIME. Methods Enzymol 531:371–444CrossRefPubMedPubMedCentralGoogle Scholar
  51. Oporto B, Hurtado A (2011) Emerging thermotolerant Campylobacter species in healthy ruminants and swine. Foodborne Pathog Dis 8(7):807–813CrossRefPubMedGoogle Scholar
  52. Plovier H, Everard A, Druart C, Depommier C, Van HM, Geurts L et al (2017) A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat Med 23:107–113CrossRefPubMedGoogle Scholar
  53. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glockner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596CrossRefPubMedGoogle Scholar
  54. Rodriguez C, Taminiau B, Brévers B, Avesani V, Van BJ, Leroux A, Gallot M, Bruwier A, Amory H, Delmée M, Daube G (2015) Faecal microbiota characterisation of horses using 16 rdna barcoded pyrosequencing, and carriage rate of clostridium difficile at hospital admission. BMC Microbiol 15(1):1–14CrossRefGoogle Scholar
  55. SAS Institute Inc (2009) 2009 SAS Online Doc®9.1.3. SAS Institute Inc., Cary, NCGoogle Scholar
  56. Shanks OC, Kelty CA, Archibeque S, Jenkins M, Newton RJ, McLellan SL, Huse SM, Sogin M (2011) Community structures of fecal bacteria in cattle from different animal feeding operations. Appl Environ Microbiol 77:2992–3001CrossRefPubMedPubMedCentralGoogle Scholar
  57. Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27(3):379–423CrossRefGoogle Scholar
  58. Shin NR, Lee JC, Lee HY, Kim MS, Whon TW, Lee MS, Bae JW (2014) An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut 63:727–735CrossRefPubMedGoogle Scholar
  59. Shterzer N, Mizrahi I (2015) The animal gut as a melting pot for horizontal gene transfer. Can J Microbiol 61:603–605CrossRefPubMedGoogle Scholar
  60. Smith AH, Mackie RI (2004) Effect of condensed tannin on bacterial diversity and metabolic activity in the rat gastrointestinal tract. Appl Environ Microbiol 70:1104–1115CrossRefPubMedPubMedCentralGoogle Scholar
  61. Stanley K, Jones K (2003) Cattle and sheep farms as reservoirs of Campylobacter. J Appl Microbiol 94(Suppl):104S–113SCrossRefPubMedGoogle Scholar
  62. Steelman SM, Chowdhary BP, Dowd S, Suchodolski J, Janečka JE (2012) Pyrosequencing of 16S rRNA genes in fecal samples reveals high diversity of hindgut microflora in horses and potential links to chronic laminitis. BMC Vet Res 8:231CrossRefPubMedPubMedCentralGoogle Scholar
  63. Stoupi S, Williamson G, Drynan JW, Barron D, Clifford MN (2010) A comparison of the in vitro biotransformation of (−)-epicatechin and procyanidin B2 by human faecal microbiota. Mol Nutr Food Res 54(6):747–759CrossRefPubMedGoogle Scholar
  64. Ubeda C, Bucci V, Caballero S, Djukovic A, Toussaint NC, Equinda M et al (2013) Intestinal microbiota containing Barnesiella species cures vancomycin-resistant Enterococcus faecium colonization. Infect Immun 81(3):965–973CrossRefPubMedPubMedCentralGoogle Scholar
  65. Vasta V, Yanez-Ruiz DR, Mele M, Serra A, Luciano G, Lanza M, Biondi L, Priolo A (2010) Bacterial and protozoal communities and fatty acid profile in the rumen of sheep fed a diet containing added tannins. Appl Environ Microbiol 76:2549–2555CrossRefPubMedPubMedCentralGoogle Scholar
  66. Vázquez-Baeza Y, Pirrung M, Gonzalez A, Knight R (2013) EMPeror: a tool for visualizing high-throughput microbial community data. Structure 585:20Google Scholar
  67. Wang Y, Jin L, Ominski K, He M, Xu Z, Krause D, Acharya S, Wittenberg K, Liu X, McAllister TA, Stanford K (2013) Screening of condensed tannins from Canadian prairie forages for anti-Escherichia coli O157:H7 with an emphasis on purple prairie clover (Dalea purpurea Vent). J Food Prot 76:560–567CrossRefPubMedGoogle Scholar
  68. Wunderlin T, Junier T, Roussel-Delif L, Jeanneret N, Junier P (2014) Endospore-enriched sequencing approach reveals unprecedented diversity of Firmicutes in sediments. Environ Microbiol Rep 6(6):631–639CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Qianqian Huang
    • 1
    • 2
    • 3
  • Devin B. Holman
    • 2
  • Trevor Alexander
    • 2
  • Tianming Hu
    • 3
  • Long Jin
    • 2
  • Zhongjun Xu
    • 2
  • Tim A. McAllister
    • 2
  • Surya Acharya
    • 2
  • Guoqi Zhao
    • 1
  • Yuxi Wang
    • 2
  1. 1.College of Animal Science and TechnologyYangzhou UniversityYangzhouChina
  2. 2.Lethbridge Research CentreAgriculture and Agri-Food CanadaLethbridgeCanada
  3. 3.College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina

Personalised recommendations