Advertisement

Archives of Microbiology

, Volume 200, Issue 1, pp 91–96 | Cite as

Spirosoma metallum sp. nov., isolated from an automobile air conditioning system

  • Dong-Uk Kim
  • Hyosun Lee
  • Suyeon Lee
  • Sooyeon Park
  • Jung-Hoon Yoon
  • So Yoon Park
  • Jong-Ok KaEmail author
Original Paper
  • 201 Downloads

Abstract

A Gram-stain-negative and yellow-pigmented bacterial strain, designated TX0653T, was isolated from an automobile evaporator core collected in Korea. The cells were aerobic and rod-shaped. The strain grew at 10−28 °C (optimum, 25 °C), at pH 6.0−7.5 (optimum, 6.5), and in the presence of 0−1% (w/v) NaCl (optimum, 0%). Phylogenetically, the strain was related to members of the genus Spirosoma (95.1−90.8% 16S rRNA sequence similarity) and distantly related to Spirosoma pulveris JSH5-14T (95.1%), Spirosoma fluviale MSd3T (95.0%), Spirosoma endophyticum DSM 26130T (94.8%), and Spirosoma linguale DSM 74T (94.6%). The major fatty acids of the strain were summed feature 3 (C16:1 ω6c and/or C16:1 ω7c), C16:1 ω5c, iso-C15:0, iso-C17:0 3-OH, and C16:0. MK-7 was identified as the predominant menaquinone. The polar lipids profile indicated the presence of one phosphatidylethanolamine, one unidentified aminolipid, one unidentified aminophospholipid, two unidentified phospholipids, and three unidentified lipids. On the basis of the phenotypic, genotypic, and chemotaxonomic characteristics, strain TX0653T represents a novel species in the genus Spirosoma, for which the name Spirosoma metallum sp. nov. (= KACC 19278T = NBRC 112495T) is proposed.

Keywords

Spirosoma metallum Novel species Automobile air conditioning system Polyphasic taxonomy 

Notes

Acknowledgements

This study was supported by a grant from the Regional Subgenebank Support Program of Rural Development Administration, Republic of Korea.

Supplementary material

203_2017_1424_MOESM1_ESM.docx (13 kb)
Supplementary material 1 (DOCX 13 kb)

References

  1. Ahn J-H, Weon H-Y, Kim S-J, Hong S-B, Seok S-J, Kwon S-W (2014) Spirosoma oryzae sp. nov., isolated from rice soil and emended description of the genus Spirosoma. Int J Syst Evol Microbiol 64:3230–3234CrossRefPubMedGoogle Scholar
  2. Baik KS, Kim MS, Park SC, Lee DW, Lee SD, Ka JO, Choi SK, Seong CN (2007) Spirosoma rigui sp. nov., isolated from fresh water. Int J Syst Evol Microbiol 57:2870–2873CrossRefPubMedGoogle Scholar
  3. Bernardet J-F, Nakagawa Y, Holmes B (2002) Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 52:1049–1070PubMedGoogle Scholar
  4. Breznak JA, Costilow RN (2007) Physicochemical factors in growth. In: Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM, Snyder LR (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, pp 309–329Google Scholar
  5. Chang X, Jiang F, Wang T, Kan W, Qu Z, Ren L, Fang C, Peng F (2014) Spirosoma arcticum sp. nov., isolated from high Arctic glacial till. Int J Syst Evol Microbiol 64:2233–2237CrossRefPubMedGoogle Scholar
  6. Denner E, Paukner S, Kämpfer P, Moore E, Abraham WR, Busse HJ, Wanner G, Lubitz W (2001) Sphingomonas pituitosa sp. nov., an exopolysaccharide-producing bacterium that secretes an unusual type of sphingan. Int J Syst Evol Microbiol 51:827–841CrossRefPubMedGoogle Scholar
  7. Embley TM, Wait R (1994) Structural lipids of eubacteriaStructural lipids of eubacteria. In: Goodfellow M, O’Donnell AG (eds) Modern microbial method: chemical methods in prokaryotic systematics. Wiley, Chichester, pp 121–161Google Scholar
  8. Felsenstein J (1985) Confidence-limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefPubMedGoogle Scholar
  9. Finster KW, Herbert RA, Lomstein BA (2009) Spirosoma spitsbergense sp. nov. and Spirosoma luteum sp. nov., isolated from a high Arctic permafrost soil, and emended description of the genus Spirosoma. Int J Syst Evol Microbiol 59:839–844CrossRefPubMedGoogle Scholar
  10. Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Systematic Biol 20:406–416CrossRefGoogle Scholar
  11. Fries J, Pfeiffer S, Kuffner M, Sessitsch A (2013) Spirosomas endophyticum sp. nov., isolated from Zn-and Cd-accumulating Salix caprea. Int J Syst Evol Microbiol 63:4586–4590CrossRefPubMedPubMedCentralGoogle Scholar
  12. Hatayama K, Kuno T (2015) Spirosoma fluviale sp. nov., isolated from river water. Int J Syst Evol Microbiol 65:3447–3450CrossRefPubMedGoogle Scholar
  13. Joo ES, Lee J-J, Cha S, Jheong W, Seo T, Lim S, S-w Jeong, Srinivasan S (2015) Spirosoma pulveris sp. nov., a bacterium isolated from a dust sample collected at Chungnam province. South Korea The J Microbiol 53:750–755PubMedGoogle Scholar
  14. Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Monro HN (ed) Mammalian protein metabolism. Academic Press, New York, pp 21–132CrossRefGoogle Scholar
  15. Kim DU, Ka JO (2014) Roseomonas soli sp. nov., isolated from an agricultural soil cultivated with Chinese cabbage (Brassica campestris). Int J Syst Evol Microbiol 64:1024–1029CrossRefPubMedGoogle Scholar
  16. Kim DU, Lee H, Kim SG, Ahn JH, Park SY, Ka JO (2015) Spirosoma aerolatum sp. nov., isolated from a motor car air conditioning system. Int J Syst Evol Microbiol 65:4003–4007CrossRefPubMedGoogle Scholar
  17. Komagata K, Suzuki K-I (1987) Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19:161–207CrossRefGoogle Scholar
  18. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874CrossRefPubMedGoogle Scholar
  19. Lail K, Sikorski J, Saunders E, Lapidus A, Del Rio TG, Copeland A et al (2010) Complete genome sequence of Spirosoma linguale type strain (1T). Stand Genomic Sci 2:176–185CrossRefPubMedPubMedCentralGoogle Scholar
  20. Larkin JM, Borrall R (1984) Family I Spirosomaceae Larkin and Borrall 1978, 595AL. In: Bergey DH, Krieg NR, Holt JG (eds) Bergey’s manual of systematic bacteriology. Williams & Wilkins, Baltimore, pp 125–126Google Scholar
  21. Minnikin D, O’donnell A, Goodfellow M, Alderson G, Athalye M, Schaal A, Parlett J (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241CrossRefGoogle Scholar
  22. Pruesse E, Peplies J, Glockner FO (2012) SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28:1823–1829CrossRefPubMedPubMedCentralGoogle Scholar
  23. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  24. Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. MIDI technical note 101. Microbial ID, Inc, NewarkGoogle Scholar
  25. Smibert RM, Krieg NR (1994) Phenotypic characterization. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, pp 607–654Google Scholar
  26. Ten LN, Xu JL, Jin FX, Im WT, Oh HM, Lee ST (2009) Spirosoma panaciterrae sp. nov., isolated from soil. Int J Syst Evol Microbiol 59:331–335CrossRefPubMedGoogle Scholar
  27. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: A taxonomically united database of 16S rRNA and whole genome assemblies. Int J Syst Evol Microbiol 67:1613–1617CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Dong-Uk Kim
    • 1
  • Hyosun Lee
    • 1
  • Suyeon Lee
    • 1
  • Sooyeon Park
    • 2
  • Jung-Hoon Yoon
    • 2
  • So Yoon Park
    • 3
  • Jong-Ok Ka
    • 1
    Email author
  1. 1.Department of Agricultural Biotechnology and Research Institute of Agriculture and Life SciencesSeoul National UniversitySeoulRepublic of Korea
  2. 2.Department of Food Science and BiotechnologySungkyunkwan UniversitySuwonRepublic of Korea
  3. 3.Research and Development DivisionHyundai Motor GroupUiwangRepublic of Korea

Personalised recommendations