Advertisement

Archives of Microbiology

, Volume 199, Issue 7, pp 1065–1068 | Cite as

Draft genome sequence of the potato pathogen Rhizoctonia solani AG3-PT isolate Ben3

  • Daniel Wibberg
  • Franziska Genzel
  • Bart Verwaaijen
  • Jochen Blom
  • Oliver Rupp
  • Alexander Goesmann
  • Rita Zrenner
  • Rita Grosch
  • Alfred Pühler
  • Andreas Schlüter
Short Communication

Abstract

The basidiomycetes fungus Rhizoctonia solani AG3 is responsible for black scurf disease on potato and occurs in each potato growing area world-wide. In this study, the draft genome sequence of the black scurf pathogen R. solani AG3-PT isolate Ben3 is presented. The genome sequence of R. solani AG3-PT isolate Ben3 consists of 1385 scaffolds. These scaffolds amount to a size of approx. 51 Mb. Considering coverage analyses of contigs, the size of the diploid genome was estimated to correspond to 116 Mb. Gene prediction by applying AUGUSTUS (3.2.1.) resulted in 12,567 identified genes. Based on automatic annotation using GenDBE, genes potentially encoding cellulases and enzymes involved in secondary metabolite synthesis were identified in the R. solani AG3-PT isolate Ben3 genome. Comparative analyses including the R. solani AG3 isolate Rhs1AP, also originating from potato, revealed first insights into core genes shared by both isolates and unique determinants of each isolate.

Keywords

Ultrafast sequencing AUGUSTUS GenDBE EDGAR 

Notes

Acknowledgements

Bioinformatics support by the BMBF-funded project “Bielefeld-Gießen Center for Microbial Bioinformatics—BiGi (Grant Number 031A533)” within the German Network for Bioinformatics Infrastructure (de.NBI) is gratefully acknowledged.

Supplementary material

203_2017_1394_MOESM1_ESM.tif (537 kb)
Supplementary material 1 (TIFF 537 kb)
203_2017_1394_MOESM2_ESM.xls (45 kb)
Supplementary material 2 (XLS 45 kb)
203_2017_1394_MOESM3_ESM.xls (55 kb)
Supplementary material 3 (XLS 55 kb)

References

  1. Banville GJ (1989) Yield losses and damage to potato plants caused by Rhizoctonia solani Kühn. Am Potato J 66:821–834CrossRefGoogle Scholar
  2. Blom J, Albaum SP, Doppmeier D, Pühler A, Vorhölter FJ, Zakrzewski M, Goesmann A (2009) EDGAR: a software framework for the comparative analysis of prokaryotic genomes. BMC Bioinform 10:154CrossRefGoogle Scholar
  3. Blom J, Kreis J, Spänig S, Juhre T, Bertelli C, Ernst C, Goesmann A (2016) EDGAR 2.0: an enhanced software platform for comparative gene content analyses. Nucleic Acids Res 44:W22–W28CrossRefPubMedPubMedCentralGoogle Scholar
  4. Campion C, Chatot C, Perraton B, Andrivon D (2003) Anastomosis groups, pathogenicity and sensitivity to fungicides of Rhizoctonia solani isolates collected on potato crops in France. Eur J Plant Pathol 109:983–992CrossRefGoogle Scholar
  5. Carling DE, Kuninaga S, Brainard KA (2002) Hyphal anastomosis reactions, rDNA-internal transcribed spacer sequences, and virulence level s among subsets of Rhizoctonia solani anastomosis group-2 (AG2) and AG-BI. Phytopathology 92:43–50CrossRefPubMedGoogle Scholar
  6. Cubeta MA, Thomas E, Dean RA, Jabaji S, Neate SM, Tavantzis S, Toda T, Vilgalys R, Bharathan N, Fedorova-Abrams N, Pakala SB, Pakala SM, Zafar N, Joardar V, Losada L, Nierman WC (2014) Draft genome sequence of the plant-pathogenic soil fungus Rhizoctonia solani anastomosis group 3 strain Rhs1AP. Genome Announc 2(5):e01072–e01114CrossRefPubMedPubMedCentralGoogle Scholar
  7. Fiers M, Chatot C, Edel-Hermann V, Hingrat LY, Konate AY, Gautheron N, Guilery E, Alabouvette C, Steinberg C (2011) Genetic diversity of Rhizoctonia solani associated with potato tubers in France. Mycologia 103:1230–1244CrossRefPubMedGoogle Scholar
  8. Gkarmiri K, Finlay RD, Alström S, Thomas E, Cubeta MA, Högberg N (2015) Transcriptomic changes in the plant pathogenic fungus Rhizoctonia solani AG-3 in response to the antagonistic bacteria Serratia proteamaculans and Serratia plymuthica. BMC Genom 16:630CrossRefGoogle Scholar
  9. Grosch R, Schneider JHM, Peth A, Waschke A, Franken P, Kofoet A, Jabaji-Hare SH (2007) Development of a specific PCR assay for the detection of Rhizoctonia solani AG 1-IB using SCAR primers. J Appl Microbiol 102:806–819CrossRefPubMedGoogle Scholar
  10. Hide GA, Horrocks JK (1994) Influence of stem canker (Rhizoctonia solani Kühn) on tuber yield, tuber size, reducing sugars and crisp colour in cv record. Potato Res 37:43–49CrossRefGoogle Scholar
  11. Husemann P, Stoye J (2010) r2cat: synteny plots and comparative assembly. Bioinformatics 26:570–571CrossRefPubMedGoogle Scholar
  12. Konstantinidis KT, Tiedje JM (2005) Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci USA 102:2567–2572CrossRefPubMedPubMedCentralGoogle Scholar
  13. Kuninaga S, Carling DE, Takeuchi T, Yokosawa R (2000) Comparison of rDNA-ITS sequences between potato and tobacco strains in Rhizoctonia solani AG-3. J Gen Plant Pathol 66:2–11CrossRefGoogle Scholar
  14. Lehtonen MJ, Somervuo P, Valkonen JP (2008) Infection with Rhizoctonia solani induces defense genes and systemic resistance in potato sprouts grown without light. Phytopathology 98:1190–1198CrossRefPubMedGoogle Scholar
  15. Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B (2014) The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42:D490–D495CrossRefPubMedGoogle Scholar
  16. Losada L, Pakala SB, Fedorova ND, Joardar V, Shabalina SA, Hostetler J, Pakala SM, Zafar N, Thomas E, Rodriguez-Carres M, Dean R, Vilgalys R, Nierman WC, Cubeta MA (2014) Mobile elements and mitochondrial genome expansion in the soil fungus and potato pathogen Rhizoctonia solani AG-3. FEMS Microbiol Lett 352:165–173CrossRefPubMedGoogle Scholar
  17. Meyer F, Goesmann A, McHardy AC, Bartels D, Bekel T, Clausen J, Kalinowski J, Linke B, Rupp O, Giegerich R, Puhler A (2003) GenDB—an open source genome annotation system for prokaryote genomes. Nucleic Acids Res 31:2187–2195CrossRefPubMedPubMedCentralGoogle Scholar
  18. Ogoshi A (1987) Ecology and pathogenicity of anastomosis and intraspecific groups of Rhizoctonia solani Kühn. Annu Rev Phytopathol 25:125–143CrossRefGoogle Scholar
  19. Rupp O, Becker J, Brinkrolf K, Timmermann C, Borth N, Pühler A, Noll T, Goesmann A (2014) Construction of a public CHO cell line transcript database using versatile bioinformatics analysis pipelines. PLoS One 9:e85568CrossRefPubMedPubMedCentralGoogle Scholar
  20. Sharon M, Kuninaga S, Hyakumachi M, Naito S, Sneh B (2008) Classification of Rhizoctonia spp. using rDNA-ITS sequence analysis supports the genetic basis of the classical anastomosis grouping. Myciscience 49:93–114CrossRefGoogle Scholar
  21. Stanke M, Keller O, Gunduz I, Hayes A, Waack S, Morgenstern B (2006) AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Res 34:W435–W439CrossRefPubMedPubMedCentralGoogle Scholar
  22. Stevenson WR, Loria R, Franc GD, Weingartner DP (2001) Compendium of potato diseases. The American Phytopathological Society, MinnesotaGoogle Scholar
  23. Vilgalys R, Cubeta MA (1994) Molecular systematics and population biology of Rhizoctonia. Annu Rev Phytopathol 32:135–155CrossRefGoogle Scholar
  24. Weber T, Blin K, Duddela S, Krug D, Kim HU, Bruccoleri R, Lee SY, Fischbach MA, Müller R, Wohlleben W, Breitling R, Takano E, Medema MH (2015) AntiSMASH 3.0-A comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Res 43:W237–W243CrossRefPubMedPubMedCentralGoogle Scholar
  25. Wibberg D, Jelonek L, Rupp O, Hennig M, Eikmeyer F, Goesmann A, Hartmann A, Borriss R, Grosch R, Pühler A, Schlüter A (2013) Establishment and interpretation of the genome sequence of the phytopathogenic fungus Rhizoctonia solani AG1-IB isolate 7/3/14. J Biotechnol 167:142–155CrossRefPubMedGoogle Scholar
  26. Wibberg D, Rupp O, Blom J, Jelonek L, Kröber M, Verwaaijen B, Goesmann A, Albaum S, Grosch R, Pühler A, Schlüter A (2015a) Development of a Rhizoctonia solani AG1-IB specific gene model enables comparative genome analyses between phytopathogenic R. solani AG1-IA, AG1-IB, AG3 and AG8 isolates. PLoS One 10:e0144769CrossRefPubMedPubMedCentralGoogle Scholar
  27. Wibberg D, Rupp O, Jelonek L, Kröber M, Verwaaijen B, Blom J, Winkler A, Goesmann A, Grosch R, Pühler A, Schlüter A, Kröber M, Verwaaijen B, Blom J, Winkler A, Goesmann A, Grosch R, Pühler A, Schlüter A (2015b) Improved genome sequence of the phytopathogenic fungus Rhizoctonia solani AG1-IB 7/3/14 as established by deep mate-pair sequencing on the MiSeq (Illumina) system. J Biotechnol 203:19–21CrossRefPubMedGoogle Scholar
  28. Wibberg D, Andersson L, Tzelepis G, Rupp O, Blom J, Jelonek L, Pühler A, Fogelqvist J, Varrelmann M, Schlüter A, Dixelius C (2016a) Genome analysis of the sugar beet pathogen Rhizoctonia solani AG2-2IIIB revealed high numbers in secreted proteins and cell wall degrading enzymes. BMC Genom 17:245CrossRefGoogle Scholar
  29. Wibberg D, Andersson L, Rupp O, Goesmann A, Pühler A, Varrelmann M, Dixelius C, Schlüter A (2016b) Draft genome sequence of the sugar beet pathogen Rhizoctonia solani AG2-2IIIB strain BBA69670. J Biotechnol 222:11–12CrossRefPubMedGoogle Scholar
  30. Wilson PS, Ketola EO, Ahvenniemi PM, Lehtonen MJ, Valkonen JPT (2008) Dynamics of soilborne Rhizoctonia solani in the presence of Thrichoderma harzianum: effect on stem canker, black scurf and progeny tubers of potato. Plant Pathol 57:152–161Google Scholar
  31. Winnenburg R, Baldwin TK, Urban M, Rawlings C, Köhler J, Hammond-Kosack KE (2006) PHI-base: a new database for pathogen host interactions. Nucleic Acids Res 34:D459–D464CrossRefPubMedGoogle Scholar
  32. Woodhall JW, Lees AK, Edwards SG, Jenkinson P (2007) Characterization of Rhizoctonia solani from potatoes in Great Britain. Plant Pathol 56:286–295CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Daniel Wibberg
    • 1
  • Franziska Genzel
    • 2
  • Bart Verwaaijen
    • 1
    • 2
  • Jochen Blom
    • 3
  • Oliver Rupp
    • 3
  • Alexander Goesmann
    • 3
  • Rita Zrenner
    • 2
  • Rita Grosch
    • 2
  • Alfred Pühler
    • 1
  • Andreas Schlüter
    • 1
  1. 1.Genome Research of Industrial Microorganisms, CeBiTecBielefeld UniversityBielefeldGermany
  2. 2.Department Plant HealthLeibniz Institute of Vegetable and Ornamental Crops (IGZ)GroßbeerenGermany
  3. 3.Bioinformatics and Systems BiologyGießen UniversityGießenGermany

Personalised recommendations