Archives of Microbiology

, Volume 199, Issue 5, pp 665–675 | Cite as

Organophosphonates utilization by soil strains of Ochrobactrum anthropi and Achromobacter sp.

  • Inna T. Ermakova
  • Tatyana V. Shushkova
  • Alexey V. Sviridov
  • Nina F. Zelenkova
  • Natalya G. Vinokurova
  • Boris P. Baskunov
  • Alexey A. Leontievsky
Original Paper


Four bacterial strains from glyphosate- or alkylphosphonates-contaminated soils were tested for ability to utilize different organophosphonates. All studied strains readily utilized methylphosphonic acid and a number of other phosphonates, but differed in their ability to degrade glyphosate. Only strains Ochrobactrum anthropi GPK 3 and Achromobacter sp. Kg 16 utilized this compound after isolation from enrichment cultures with glyphosate. Achromobacter sp. MPK 7 from the same enrichment culture, similar to Achromobacter sp. MPS 12 from methylphosphonate-polluted source, required adaptation to growth on GP. Studied strains varied significantly in their growth parameters, efficiency of phosphonates degradation and characteristic products of this process, as well as in their energy metabolism. These differences give grounds to propose a possible model of interaction between these strains in microbial consortium in phosphonate-contaminated soils.


Glyphosate Methylphosphonate Biodegradation Soil bacteria Growth parameters Energy metabolism 



The work was supported by Russian Foundation for Basic Research (Project 14-04-01230).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. Akimenko VK (1981) Cyanide-resistant respiration of microorganisms. Uspekhi microbiologii 16:3–20Google Scholar
  2. Bai SH, Ogbourne SM (2016) Glyphosate: environmental contamination, toxicity and potential risks to human health via food contamination. Environ Sci Pollut Res Int 23:18988–19001CrossRefPubMedGoogle Scholar
  3. Bujacz B, Wieczorek P, Krzysko-Lupicka T, Golab Z, Lejczak B, Kafarski P (1995) Organophosphonate utilization by the wild-type strain of Penicillum notatum. Appl Environ Microbiol 61:2905–2910PubMedPubMedCentralGoogle Scholar
  4. Carson DB, Heitkamp MA, Hallas LE (1997) Biodegradation of N-phosphonomethyliminodiacetic acid by microorganisms from industrial activated sludge. Can J Microbiol 43:97–101CrossRefPubMedGoogle Scholar
  5. Castle LA, Siehl DL, Gorton R, Patten PA, Chen YH, Bertain S, Cho H-J, Duck N, Wong J, Liu D, Lassner MW (2004) Discovery and directed evolution of a glyphosate tolerance gene. Science 304:1151–1154CrossRefPubMedGoogle Scholar
  6. Dalrymple BP, Peters JM, Vuocolo T (1992) Characterisation of genes encoding two novel members of the aldo-keto reductase superfamily. Biochem Int 28:651–657PubMedGoogle Scholar
  7. Dick RE, Quinn JP (1995) Glyphosate-degrading isolates from environmental samples: occurrence and pathways of degradation. Appl Microbiol Biotechnol 43:545–550CrossRefPubMedGoogle Scholar
  8. Duke SO (2011) Glyphosate degradation in glyphosate-resistant and -susceptible crops and weeds. J Agric Food Chem 59:5835–5841CrossRefPubMedGoogle Scholar
  9. Ermakova IT, Shushkova TV, Leontievsky AA (2008) Microbial degradation of organophosphonates by soil bacteria. Microbiology (Moscow) 77:615–620CrossRefGoogle Scholar
  10. Ermakova IT, Kiseleva NI, Shushkova T, Zharikov M, Zharikov GA, Leontievsky AA (2010) Bioremediation of glyphosate-contaminated soils. Appl Microbiol Biotechnol 88:585–594CrossRefPubMedGoogle Scholar
  11. Fitzgibbon JE, Braymer HD (1990) Cloning of a gene from Pseudomonas sp. strain PG2982 conferring increased glyphosate resistance. Appl Environ Microbiol 56:3382–3388PubMedPubMedCentralGoogle Scholar
  12. Gard JK, Feng PCC, Hutton WC (1997) Nuclear magnetic resonance timecourse studies of glyphosate metabolism by microbial isolates. Xenobiotica 27:633–644CrossRefPubMedGoogle Scholar
  13. Hadi F, Mousavi A, Akbari NK, Ghaderi TH, Hatef SA (2013) New bacterial strain of the genus Ochrobactrum with glyphosate-degrading activity. J Environ Sci Health B 48:208–213CrossRefPubMedGoogle Scholar
  14. Hallas LE, Adams WJ, Heitkamp MA (1992) Glyphosate degradation by immobilized bacteria: field studies with industrial wastewater effluent. Appl Environ Microbiol 58:1215–1219PubMedPubMedCentralGoogle Scholar
  15. Hess HH, Derr JE (1975) Assay of inorganic and organic phosphorus in the 0.1–5 nanomole range. Anal Biochem 63:607–613CrossRefPubMedGoogle Scholar
  16. Hove-Jensen B, Zechel DL, Jochimsen B (2014) Utilization of glyphosate as phosphate source: biochemistry and genetics of bacterial carbon–phosphorus lyase. Microbiol Mol Biol Rev 78:176–197CrossRefPubMedPubMedCentralGoogle Scholar
  17. Jacob GS, Garbow JR, Hallas LE, Kimack NM, Kishore GM (1988) Metabolism of glyphosate in Pseudomonas sp. strain LBr. Appl Environ Microbiol 54:2953–2958PubMedPubMedCentralGoogle Scholar
  18. Kamat SS, Raushel FM (2013) The enzymatic conversion of phosphonates to phosphate by bacteria. Curr Opin Chem Biol 17:589–596CrossRefPubMedGoogle Scholar
  19. Kertesz M, Elgorriaga A, Amrhein N (1991) Evidence for two distinct phosphonate-degrading enzymes (C–P lyases) in Arthrobacter sp. GLP-1. Biodegradation 2:53–59CrossRefPubMedGoogle Scholar
  20. Kishore GM, Barry GF (1992) Glyphosate tolerant plants. International patent WO92/00377Google Scholar
  21. Liu C-M, McLean PA, Sookdeo CC, Cannon FC (1991) Degradation of the herbicide glyphosate by members of the family Rhizobiaceae. Appl Environ Microbiol 57:1799–1804PubMedPubMedCentralGoogle Scholar
  22. Matys SV, Laurinavichus KS, Krupyanko VI, Nesmeyanova MA (2001) Optimization of degradation of methylphosphonate—analogue of toxic pollutants with direct C–P bond by Escherichia coli. Process Biochem 36:821–827CrossRefGoogle Scholar
  23. McAuliffe KS, Hallas LE, Kulpa CF (1990) Glyphosate degradation by Agrobacterium radiobacter isolated from activated sludge. J Ind Microbiol 6:219–221CrossRefGoogle Scholar
  24. McGrath JW, Chin JP, Quinn JP (2013) Organophosphonates revealed: new insights into the microbial metabolism of ancient molecules. Nat Rev Microbiol 11:412–419CrossRefPubMedGoogle Scholar
  25. Mesnage R, Defarge N, Spiroux de Vendomois J, Seralini GE (2015) Potential toxic effects of glyphosate and its commercial formulations below regulatory limits. Food Chem Toxicol 84:133–153CrossRefPubMedGoogle Scholar
  26. Novikov YV, Lastochkina KO, Boldina ZN (1990) Metody issledovaniya kachestva vody vodoemov (Methods of investigation of reservoir water quality). Meditsina, Moscow, pp 114–119Google Scholar
  27. Peñaloza-Vazquez A, Mena GL, Herrera-Estrella L, Bauley AM (1995) Cloning and sequencing of the genes involved in glyphosate utilization by Pseudomonas pseudomallei. Appl Environ Microbiol 61:538–543PubMedPubMedCentralGoogle Scholar
  28. Pipke R, Amrhein N (1988) Degradation of the phosphonate herbicide glyphosate by Arthrobacter atrocyaneus ATCC 13752. Appl Environ Microbiol 54:1293–1296PubMedPubMedCentralGoogle Scholar
  29. Pipke R, Amrhein N, Jacob GS, Schaefer J, Kishore GM (1987) Metabolism of glyphosate in an Arthrobacter sp. GLP-1. Eur J Biochem 165:267–273CrossRefPubMedGoogle Scholar
  30. Quinn JP, Peden JMM, Dick RE (1988) Glyphosate tolerance and utilization by the microflora of soils treated with the herbicide. Appl Microbiol Biotechnol 29:511–516CrossRefGoogle Scholar
  31. Quinn JP, Peden JMM, Dick RE (1989) Carbon–phosphorus bond cleavage by Gram-positive and Gram-negative soil bacteria. Appl Microbiol Biotechnol 31:283–287CrossRefGoogle Scholar
  32. Schowanek D, Verstraete W (1990) Phosphonate utilization by bacterial cultures and enrichments from environmental samples. Appl Environ Microbiol 56:895–903PubMedPubMedCentralGoogle Scholar
  33. Shushkova TV, Ermakova IT, Sviridov AV, Leontievsky AA (2012) Biodegradation of glyphosate by soil bacteria: optimization of cultivation and the method for active biomass storage. Microbiology (Moscow) 81:44–50CrossRefGoogle Scholar
  34. Shushkova TV, Vinokurova NG, Baskunov BP, Zelenkova NF, Sviridov AV, Ermakova IT, Leontievsky AA (2016) Glyphosate acetylation as a specific trait of Achromobacter sp. Kg 16 physiology. Appl Microbiol Biotechnol 100:847–855CrossRefPubMedGoogle Scholar
  35. Siehl DL, Castle LA, Gorton R, Keenan RJ (2007) The molecular basis of glyphosate resistance by an optimized microbial acetyltransferase. J Biol Chem 282:11446–11455CrossRefPubMedGoogle Scholar
  36. Sviridov AV, Shushkova TV, Zelenkova NF, Vinokurova NG, Morgunov IG, Ermakova IT, Leontievsky AA (2012) Distribution of glyphosate and methylphosphonate catabolism systems in soil bacteria Ochrobactrum anthropi and Achromobacter sp. Appl Microbiol Biotechnol 93:787–796CrossRefPubMedGoogle Scholar
  37. Sviridov AV, Shushkova TV, Ermakova IT, Ivanova EV, Leontievsky AA (2014) Glyphosate: safety risks, biodegradation, and bioremediation. In: Cao G, Orru R (eds) Current environmental issues and challenges. Springer, Dodrecht, pp. 183–192CrossRefGoogle Scholar
  38. Torstensson L (1985) Behaviour of glyphosate in soils and its degradation. In: Grossbard E, Atkinson D (eds) The herbicide glyphosate. Butterworths, London, pp 137–149Google Scholar
  39. Wackett LP, Shames SL, Venditti CP, Walsh CT (1987) Bacterial carbon–phosphorus lyase: products, rates, and regulation of phosphonic and phosphinic acid metabolism. J Bacteriol 169:710–717CrossRefPubMedPubMedCentralGoogle Scholar
  40. White AK, Metcalf WW (2007) Microbial metabolism of reduced phosphorus compounds. Annu Rev Microbiol 61:379–400CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Inna T. Ermakova
    • 1
  • Tatyana V. Shushkova
    • 1
  • Alexey V. Sviridov
    • 1
  • Nina F. Zelenkova
    • 1
  • Natalya G. Vinokurova
    • 1
  • Boris P. Baskunov
    • 1
  • Alexey A. Leontievsky
    • 1
  1. 1.G.K. Skryabin Institute of Biochemistry and Physiology of MicroorganismsRussian Academy of SciencesMoscowRussia

Personalised recommendations