Advertisement

Archives of Microbiology

, Volume 199, Issue 5, pp 757–766 | Cite as

Effects of pyrite and sphalerite on population compositions, dynamics and copper extraction efficiency in chalcopyrite bioleaching process

  • Yunhua Xiao
  • Xueduan Liu
  • Weiling Dong
  • Yili Liang
  • Jiaojiao Niu
  • Yabing Gu
  • Liyuan Ma
  • Xiaodong Hao
  • Xian Zhang
  • Zhen Xu
  • Huaqun Yin
Original Paper

Abstract

This study used an artificial microbial community with four known moderately thermophilic acidophiles (three bacteria including Acidithiobacillus caldus S1, Sulfobacillus thermosulfidooxidans ST and Leptospirillum ferriphilum YSK, and one archaea, Ferroplasma thermophilum L1) to explore the variation of microbial community structure, composition, dynamics and function (e.g., copper extraction efficiency) in chalcopyrite bioleaching (C) systems with additions of pyrite (CP) or sphalerite (CS). The community compositions and dynamics in the solution and on the ore surface were investigated by real-time quantitative PCR (qPCR). The results showed that the addition of pyrite or sphalerite changed the microbial community composition and dynamics dramatically during the chalcopyrite bioleaching process. For example, A. caldus (above 60%) was the dominant species at the initial stage in three groups, and at the middle stage, still dominated C group (above 70%), but it was replaced by L. ferriphilum (above 60%) in CP and CS groups; at the final stage, L. ferriphilum dominated C group, while F. thermophilum dominated CP group on the ore surface. Furthermore, the additions of pyrite or sphalerite both made the increase of redox potential (ORP) and the concentrations of Fe3+ and H+, which would affect the microbial community compositions and copper extraction efficiency. Additionally, pyrite could enhance copper extraction efficiency (e.g., improving around 13.2% on day 6) during chalcopyrite bioleaching; on the contrary, sphalerite restrained it.

Keywords

Artificial microbial community Chalcopyrite bioleaching Real-time PCR 

Notes

Acknowledgements

The study was supported by the National Nature Science Foundation of China (No. 31570113 and No. 41573072), and Graduate Student Research Innovation Project in Central South University (No. 2016zzts105). Thanks to prof. Huaqun Yin and Xueduan Liu who helped to design this study and contributed material essential for the study, to Weiling Dong, Liyuan Ma, Xiaodong Hao, Yili Liang, Yabin Gu and Zhen Xu for their help to finish this experiment, and to Jiaojiao Niu and Xian Zhang for data analysis.

References

  1. Ahmadi A, Schaffie M, Manafi Z, Ranjbar M (2010) Electrochemical bioleaching of high grade chalcopyrite flotation concentrates in a stirred bioreactor. Hydrometallurgy 104:99–105. doi: 10.1016/j.hydromet.2010.05.001 CrossRefGoogle Scholar
  2. Akcil A, Ciftci H, Deveci H (2007) Role and contribution of pure and mixed cultures of mesophiles in bioleaching of a pyritic chalcopyrite concentrate. Miner Eng 20:310–318. doi: 10.1016/j.mineng.2006.10.016 CrossRefGoogle Scholar
  3. Behrad Vakylabad A (2011) A comparison of bioleaching ability of mesophilic and moderately thermophilic culture on copper bioleaching from flotation concentrate and smelter dust. Int J Miner Process 101:94–99. doi: 10.1016/j.minpro.2011.09.003 CrossRefGoogle Scholar
  4. Boon M, Snijder M, Hansford GS, Heijnen JJ (1998) The oxidation kinetics of zinc sulphide with Thiobacillus ferrooxidans. Hydrometallurgy 48:171–186. doi: 10.1016/S0304-386X(97)00081-9 CrossRefGoogle Scholar
  5. Dorado AD, Solé M, Lao C, Alfonso P, Gamisans X (2012) Effect of pH and Fe(III) ions on chalcopyrite bioleaching by an adapted consortium from biogas sweetening. Miner Eng 39:36–38. doi: 10.1016/j.mineng.2012.06.009 CrossRefGoogle Scholar
  6. Dutrizac JE (1981) The dissolution of chalcopyrite in ferric sulfate and ferric chloride media. Metall Trans B 12:371–378. doi: 10.1007/BF02654471 CrossRefGoogle Scholar
  7. He Z, Yin Z, Wang X, Zhong H, Sun W (2012) Microbial community changes during the process of pyrite bioleaching. Hydrometallurgy s 125–126:81–89. doi: 10.1016/j.hydromet.2012.05.010 CrossRefGoogle Scholar
  8. Jiang H et al. (2015) Effects of arsenite resistance on the growth and functional gene expression of Leptospirillum ferriphilum and Acidithiobacillus thiooxidans in pure culture and coculture. Biomed Res Int 2015:1–13. doi: 10.1155/2015/203197 Google Scholar
  9. Johnson DB (2008) Biodiversity and interactions of acidophiles: key to understanding and optimizing microbial processing of ores and concentrates. T Nonferr Metal Soc 18:1367–1373. doi: 10.1016/S1003-6326(09)60010-8 CrossRefGoogle Scholar
  10. Khmeleva TN, Georgiev TV, Jasieniak M, Skinner WM, Beattie DA (2005) XPS and ToF-SIMS study of a chalcopyrite–pyrite–sphalerite mixture treated with xanthate and sodium bisulphite. Surf Interface Anal 37:699–709. doi: 10.1002/sia.2067 CrossRefGoogle Scholar
  11. Kuenen JG, Pronk JT, Hazeu W, Meulenberg R, Bos P (1993) A review of bioenergetics and enzymology of sulfur compound oxidation by acidophilic thiobacilli. In: Torma AE, Apel ML, Brierley CL (eds) Biohydrometallurgical technologies, vol 2. The Minerals, Metals and Materials Society, Warrendale, 487–494. Google Scholar
  12. Liu X, Petersson S, Sandström A (1993) Mesophilic versus moderate thermophilic bioleaching. In: Torma AE, Wey JE, Lakshmanan VI (eds) Biohydrometallurgical technologies, Vol 1. The Minerals, Metals & Materials Society, Warrendale, PA, pp 29–38Google Scholar
  13. Marhuala NP, Pradhan N, Kara RN, Suklaa LB, Mishraa BK (2008) Differential bioleaching of copper by mesophilic and moderately thermophilic acidophilic consortium enriched from same copper mine water sample. Bioresource Technol 99:8331–8336. doi: 10.1016/j.biortech.2008.03.003 CrossRefGoogle Scholar
  14. Moghaddam MY (2010) Effect of Ag+ on copper dissolution from low grade ore using mixed mesophilic bacteria. In: The national conference on mining & relative sciencesGoogle Scholar
  15. Nazari G, Dixon DG, Dreisinger DB (2011) Enhancing the kinetics of chalcopyrite leaching in the Galvanox™ process. Hydrometallurgy 105:251–258. doi: 10.1016/j.hydromet.2010.10.013 CrossRefGoogle Scholar
  16. Pina PS, Oliveira VA, Cruz FLS, Leão VA (2010) Kinetics of ferrous iron oxidation by Sulfobacillus thermosulfidooxidans. Biochem Eng J 51:194–197. doi: 10.1016/j.bej.2010.06.009 CrossRefGoogle Scholar
  17. Pronk JT, Meulenberg R, Hazeu W, Bos P, Kuenen JG (1990) Oxidation of reduced inorganic sulphur compounds by acidophilic thiobacilli. FEMS Microbiol lett 75:293–306. doi: 10.1111/j.1574-6968.1990.tb04103.x CrossRefGoogle Scholar
  18. Rodríguez Y (2003) New information on the sphalerite bioleaching mechanism at low and high temperature. Hydrometallurgy 71:57–66. doi: 10.1016/S0304-386X(03)00174-9 CrossRefGoogle Scholar
  19. Rodríguez Y, Ballester A, Blázquez ML, González F, Muñoz JA (2003a) New information on the pyrite bioleaching mechanism at low and high temperature. Hydrometallurgy 71:37–46. doi: 10.1016/S0304-386X(03)00172-5 CrossRefGoogle Scholar
  20. Rodríguez Y, Ballester A, Blázquez ML, González F, Muñoz JA (2003b) New information on the chalcopyrite bioleaching mechanism at low and high temperature. Hydrometallurgy 71:47–56. doi: 10.1016/S0304-386X(03)00173-7 CrossRefGoogle Scholar
  21. Shi S, Fang Z, Ni J (2006) Comparative study on the bioleaching of zinc sulphides. Process Biochem 41:438–446. doi: 10.1016/j.procbio.2005.07.008 CrossRefGoogle Scholar
  22. Silverman MP, Lundgren DG (1959) Studies on the chemoautotrophic iron bacterium Ferrobacillus ferrooxidans. I. An improved medium and a harvesting procedure for securing high cell yields. J Bacteriol 77:642–647PubMedPubMedCentralGoogle Scholar
  23. Thurston RS, Mandernack KW, Shanks WC (2010) Laboratory chalcopyrite oxidation by Acidithiobacillus ferrooxidans: oxygen and sulfur isotope fractionation. Chem Geol 269:252–261. doi: 10.1016/j.chemgeo.2009.10.001 CrossRefGoogle Scholar
  24. Wang S (2005) Copper leaching from chalcopyrite concentrates. Jom J Miner Metal Mater Soc 57:48–51. doi: 10.1007/s11837-005-0252-5 CrossRefGoogle Scholar
  25. Wang Y et al (2014a) Effect of pulp density on planktonic and attached community dynamics during bioleaching of chalcopyrite by a moderately thermophilic microbial culture under uncontrolled conditions. Miner Eng 61:66–72. doi: 10.1016/j.mineng.2014.03.012 CrossRefGoogle Scholar
  26. Wang Y, Zeng W, Qiu G, Chen X, Zhou H (2014b) A moderately thermophilic mixed microbial culture for bioleaching of chalcopyrite concentrate at high pulp density. Appl Environ Microb 80:741–750. doi: 10.1128/AEM.02907-13 CrossRefGoogle Scholar
  27. Watlinga HR, Watkinb EL, Ralphe DE (2010) The resilience and versatility of acidophiles that contribute to the bio-assisted extraction of metals from mineral sulphides. Environ Technol 31:915–933. doi: 10.1080/09593331003646646 CrossRefPubMedGoogle Scholar
  28. Xiao Y et al (2015a) The complicated substrates enhance the microbial diversity and zinc leaching efficiency in sphalerite bioleaching system. Appl Microbiol Biot 99:10311–10322. doi: 10.1007/s00253-015-6881-x CrossRefGoogle Scholar
  29. Xiao YH et al (2015b) Additions of pyrite or chalcopyrite alters the microbial community diversity, composition and function in sphalerite bioleaching systems. Adv Mater Res 1130:454–458. doi: 10.4028/www.scientific.net/AMR.1130.454 CrossRefGoogle Scholar
  30. Xu Y et al (2013) Comparative study of nickel resistance of pure culture and co-culture of Acidithiobacillus thiooxidans and Leptospirillum ferriphilum. Arch Microbiol 195:637–646. doi: 10.1007/s00203-013-0900-z CrossRefPubMedGoogle Scholar
  31. Yang Y, Liu W, Chen M (2015) XANES and XRD study of the effect of ferrous and ferric ions on chalcopyrite bioleaching at 30 °C and 48 °C. Miner Eng 70:99–108. doi: 10.1016/j.mineng.2014.08.021 CrossRefGoogle Scholar
  32. Zeng W et al (2010) Community structure and dynamics of the free and attached microorganisms during moderately thermophilic bioleaching of chalcopyrite concentrate. Bioresour Technol 101:7068–7075. doi: 10.1016/j.biortech.2010.04.003 CrossRefGoogle Scholar
  33. Zhang R, Wei M, Ji H, Chen X, Qiu G, Zhou H (2009) Application of real-time PCR to monitor population dynamics of defined mixed cultures of moderate thermophiles involved in bioleaching of chalcopyrite. Appl Microbiol Biot 81:1161–1168. doi: 10.1007/s00253-008-1792-8 CrossRefGoogle Scholar
  34. Zhang L et al. (2014) Influence of bioaugmentation with Ferroplasma thermophilum on chalcopyrite bioleaching and microbial community structure. Hydrometallurgy 146:15–23. doi: 10.1016/j.hydromet.2014.02.013 CrossRefGoogle Scholar
  35. Zhao H et al. (2015) Effect of redox potential on bioleaching of chalcopyrite by moderately thermophilic bacteria: an emphasis on solution compositions. Hydrometallurgy 151:141–150. doi: 10.1016/j.hydromet.2014.11.009 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Yunhua Xiao
    • 1
    • 2
  • Xueduan Liu
    • 1
    • 2
  • Weiling Dong
    • 1
    • 2
  • Yili Liang
    • 1
    • 2
  • Jiaojiao Niu
    • 1
    • 2
  • Yabing Gu
    • 1
    • 2
  • Liyuan Ma
    • 1
    • 2
  • Xiaodong Hao
    • 1
    • 2
  • Xian Zhang
    • 1
    • 2
  • Zhen Xu
    • 1
    • 2
  • Huaqun Yin
    • 1
    • 2
  1. 1.School of Minerals Processing and BioengineeringCentral South UniversityChangshaChina
  2. 2.Key Laboratory of Biometallurgy of Ministry of EducationCentral South UniversityChangshaChina

Personalised recommendations