Advertisement

Archives of Microbiology

, Volume 199, Issue 2, pp 191–201 | Cite as

An arsenate-reducing and alkane-metabolizing novel bacterium, Rhizobium arsenicireducens sp. nov., isolated from arsenic-rich groundwater

  • Balaram Mohapatra
  • Angana Sarkar
  • Swati Joshi
  • Atrayee Chatterjee
  • Sufia Khannam Kazy
  • Mrinal Kumar Maiti
  • Tulasi Satyanarayana
  • Pinaki Sar
Original Paper

Abstract

A novel arsenic (As)-resistant, arsenate-respiring, alkane-metabolizing bacterium KAs 5-22T, isolated from As-rich groundwater of West Bengal was characterized by physiological and genomic properties. Cells of strain KAs 5-22T were Gram-stain-negative, rod-shaped, motile, and facultative anaerobic. Growth occurred at optimum of pH 6.0–7.0, temperature 30 °C. 16S rRNA gene affiliated the strain KAs 5-22T to the genus Rhizobium showing maximum similarity (98.4 %) with the type strain of Rhizobium naphthalenivorans TSY03bT followed by (98.0 % similarity) Rhizobium selenitireducens B1T. The genomic G + C content was 59.4 mol%, and DNA–DNA relatedness with its closest phylogenetic neighbors was 50.2 %. Chemotaxonomy indicated UQ-10 as the major quinone; phosphatidylethanolamine, phosphatidylglycerol, and diphosphatidylglycerol as major polar lipids; C16:0, C17:0, 2-OH C10:0, 3-OH C16:0, and unresolved C18:1 ɷ7C/ɷ9C as predominant fatty acids. The cells were found to reduce O2, As5+, NO3 , SO4 2− and Fe3+ as alternate electron acceptors. The strain’s ability to metabolize dodecane or other alkanes as sole carbon source using As5+ as terminal electron acceptor was supported by the presence of genes encoding benzyl succinate synthase (bssA like) and molybdopterin-binding site (mopB) of As5+ respiratory reductase (arrA). Differential phenotypic, chemotaxonomic, genotypic as well as physiological properties revealed that the strain KAs 5-22T is separated from its nearest recognized Rhizobium species. On the basis of the data presented, strain KAs 5-22T is considered to represent a novel species of the genus Rhizobium, for which the name Rhizobium arsenicireducens sp. nov. is proposed as type strain (=LMG 28795T=MTCC 12115T).

Keywords

Arsenic Groundwater Rhizobium arsenicireducens Arsenate reduction Hydrocarbon utilization 

Notes

Acknowledgments

The work is financially supported by the grant from Council of Scientific and Industrial Research (CSIR), Govt. of India, project number 38/1314/11/EMR II, and the fellowship to BM is provided by INSPIRE fellowship scheme of Department of Science and Technology (DST), Govt. of India, fellowship number IF120832. Authors are thankful for the kind help of R. Lal (Professor, University of Delhi, North Campus, New Delhi, India) and D.K. Newman (Professor, California Institute of Technology, Pasadena, U.S.A), for providing the type strains. The authors express gratitude to S. Marqués (Professor, Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, Department of Environmental Protection, Granada, Spain) and H. S. Gehlot (Professor, Tejpur University, India) for providing the primers of bssA-like gene and nodA gene, respectively. We also acknowledge Prof A. Oren and Prof A. C. Parte for suggesting species epithet and etymology of the strain. The GenBank accession numbers for 16S rRNA, molybdopterin-binding site of As5+ respiratory reductase (arrA) and putative benzyl succinate synthase (bssA like) gene are JX173993, KR340465, and KX011179, respectively.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

203_2016_1286_MOESM1_ESM.doc (2.7 mb)
Supplementary material 1 (DOC 2813 kb)
203_2016_1286_MOESM2_ESM.docx (12 kb)
Supplementary material 2 (DOCX 11 kb)

References

  1. Aitken CM, Jones DM, Maguire MJ, Gray ND, Sherry A, Bowler BFJ et al (2013) Evidence that crude oil alkane activation proceeds by different mechanisms under sulfate-reducing and methanogenic conditions. Geochim Cosmochim Acta 109:162–174CrossRefGoogle Scholar
  2. Albalasmeh SA, Berhe AA, Ghezzehei TA (2013) A new method for rapid determination of carbohydrate and total carbon concentrations using UV spectrophotometry. Carbohydr Polym 97:253–261CrossRefPubMedGoogle Scholar
  3. Berge O, Lodhi A, Brandelet G, Santaella C, Roncato MA, Christen R, Heulin T, Achouak W (2009) Rhizobium alamii sp. nov., an exopolysaccharide-producing species isolated from legume and non-legume rhizospheres. Int J Syst Evol Microbiol 59:367–372CrossRefPubMedGoogle Scholar
  4. Blum JS, Han S, Lanoil B, Saltikov C, Witte B, Tabita FR, Langley S, Beveridge TJ, Jahnke L, Oremland RS (2009) Ecophysiology of “Halarsenatibacter silvermanii” Strain SLAS-1T, gen. nov., sp. nov., a Facultative Chemoautotrophic Arsenate Respirer from Salt-Saturated Searles Lake, California. Appl Environ Microbiol 75:1950–1960Google Scholar
  5. Cowan ST, Steel KJ (1965) Manual for the identification of medical bacteria. Cambridge University Press, LondonGoogle Scholar
  6. De Ley J, Cattoir H, Reynaerts A (1970) The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142CrossRefPubMedGoogle Scholar
  7. Drewniak L, Stasiuk R, Uhrynowski W, Sklodowska A (2015) Shewanella sp. O23S as a driving agent of a system utilizing dissimilatory arsenate-reducing bacteria responsible for self-cleaning of water contaminated with arsenic. Int J Mol Sci 16:14409–14427CrossRefPubMedPubMedCentralGoogle Scholar
  8. Fan H, Su C, Wang Y, Yao J, Zhao K, Wang Y, Wang G (2008) Sedimentary arsenite-oxidizing and arsenate-reducing bacteria associated with high arsenic groundwater from Shanyin, Northwestern China. J Appl Microbiol 105:529–539CrossRefPubMedGoogle Scholar
  9. Frank B (1889) U¨ ber die Pilzsymbiose der Leguminosen. Ber Dtsch Bot Ges 7:332–346 (in German) Google Scholar
  10. Ghosh D, Routh J, Dario M, Bhadury P (2015) Elemental and biomarker characteristics in a Pleistocene aquifer vulnerable to arsenic contamination in the Bengal Delta Plain, India. Appl Geochem 61:87–98CrossRefGoogle Scholar
  11. Gonzalez JM, Saiz-Jimenez C (2005) A simple fluorimetric method for the estimation of DNA–DNA relatedness between closely related microorganisms by thermal denaturation temperatures. Extremophiles 9:75–79CrossRefPubMedGoogle Scholar
  12. Gu T, Sun LN, Zhang J, Sui XH, Li SP (2014) Rhizobium flavum sp. nov., a triazophos-degrading bacterium isolated from soil under the long-term application of triazophos. Int J Syst Evol Microbiol 64:2017–2022CrossRefPubMedGoogle Scholar
  13. Hiraishi A, Ueda Y, Ishihara J, Mori T (1996) Comparative lipo-quinone analysis of influent sewage and activated sludge by high performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 42:457–469CrossRefGoogle Scholar
  14. Hunter WJ, Kuykendall LD, Manter DK (2007) Rhizobium selenireducens sp. nov., a selenite-reducing α Proteobacteria isolated from a bioreactor. Curr Microbiol 55:455–460CrossRefPubMedGoogle Scholar
  15. Kaiya S, Rubaba O, Yoshida N, Yamada T, Hiraishi A (2012) Characterization of Rhizobium naphthalenivorans sp. nov. with special emphasis on aromatic compound degradation and multilocus sequence analysis of housekeeping genes. J Gen Appl Microbiol 58:211–224CrossRefPubMedGoogle Scholar
  16. Kaur J, Verma M, Lal R (2011) Rhizobium rosettiformans sp. nov., isolated from a hexachlorocyclohexane dump site, and reclassification of Blastobacter aggregatus Hirsch and Muller 1986 as Rhizobium aggregatum comb. nov. Int J Syst Evol Microbiol 61:1218–1225CrossRefPubMedGoogle Scholar
  17. Kazy SK, Sar P, Asthana RK, Singh SP (1999) Copper uptake and its compartmentalization in Pseudomonas aeruginosa strains: chemical nature of cellular metal. W J Microbiol Biotechnol 15:599–605Google Scholar
  18. Kelly A, Fulton M (1953) Use of triphenyl tetrazolium in motility test medium. Am J Clin Pathol 23:512PubMedGoogle Scholar
  19. Kodaka H, Armfield AY, Lombard GL, Dowell VR (1982) Practical procedure for demonstrating bacterial flagella. J Clin Microbiol 16:948–952PubMedPubMedCentralGoogle Scholar
  20. Komagata K, Suzuki K (1987) Lipid and cell wall analysis in bacterial systematics. Methods Microbiol 19:161–206CrossRefGoogle Scholar
  21. Kudo K, Yamaguchi N, Makino T, Ohtsuka T, Kimura K, Dong DT, Amachi S (2013) Release of arsenic from soil by a novel dissimilatory arsenate-reducing bacterium, Anaeromyxobacter sp. strain PSR-1. Appl Environ Microbiol 79:463–468CrossRefGoogle Scholar
  22. Kuykendall LD, Roy MA, O’Neill JJ, Devine TE (1988) Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradirhizobium japonicum. Int J Syst Bacteriol 38:358–361CrossRefGoogle Scholar
  23. Lear G, Polya DA, Song B, Gault AG, Lloyd JR (2007) Molecular analysis of arsenate-reducing bacteria within cambodian sediments following amendment with acetate. Appl Environ Microbiol 73:1041–1048CrossRefPubMedGoogle Scholar
  24. Liu Y, Wang RP, Ren C, Lai QL, Zeng RY (2015) Rhizobium marinum sp. nov., a malachite green tolerant bacterium isolated from sea water. Int J Syst Evol Microbiol 65:4449–4454CrossRefPubMedGoogle Scholar
  25. Malasarn D, Keeffe HR, Newman DK (2008) Characterization of the arsenate respiratory reductase from Shewanella sp. strain ANA-3. J Bacteriol 190:135–142CrossRefPubMedGoogle Scholar
  26. McArthur JM, Banerjee DM, Hudson-Edwards KA, Mishra R, Purohit R (2004) Natural organic matter in sedimentary basins and its relation to arsenic in anoxic ground water: the example of West Bengal and its worldwide implications. Appl Geochem 19:1255–1293CrossRefGoogle Scholar
  27. Miller LT (1982) A single derivatization method for bacterial fatty acid methyl esters including hydroxy acids. J Clin Microbiol 16:584–586PubMedPubMedCentralGoogle Scholar
  28. Mnasri B, Mrabet M, Laguerre G, Aouani ME, Mhamdi R (2007) Salt-tolerant rhizobia isolated from a Tunisian oasis that are highly effective for symbiotic N -fixation with Phaseolus vulgaris constitute a novel biovar (bv. mediterranense) of Sinorhizobium meliloti. Arch Microbiol 187:79–85CrossRefPubMedGoogle Scholar
  29. Newman DK, Ahmann D, Morel FMM (1998) A brief review of microbial arsenate respiration. Geomicrobiol J 15:255–268CrossRefGoogle Scholar
  30. Ohtsuka T, Yamaguchi N, Makino T, Sakurai K, Kimura K, Kudo K, Homma E, Dong DT, Amachi S (2013) Arsenic dissolution from Japanese paddy soil by a dissimilatory arsenate-reducing bacterium Geobacter sp. OR-1. Environ Sci Technol 47:6263–6271PubMedGoogle Scholar
  31. Osborne TH, Mc Arthur JM, Sikdar PK, Santini JM (2015) Isolation of an arsenate-respiring bacterium from a redox front in an arsenic-polluted aquifer in West Bengal, Bengal Basin. Environ Sci Technol 49:4193–4199CrossRefPubMedGoogle Scholar
  32. Paul D, Poddar S, Sar P (2014) Characterization of arsenite-oxidizing bacteria isolated from arsenic-contaminated groundwater of West Bengal. J Environ Sci Heal A 49:1481–1492Google Scholar
  33. Paul D, Kazy SK, Gupta AK, Pal T, Sar P (2015) Diversity, metabolic properties and arsenic mobilization potential of indigenous bacteria in arsenic contaminated groundwater of West Bengal, India. PLoS ONE 10:1–40Google Scholar
  34. Quan ZX, Bae HS, Baek JH, Chen WF, Im WT, Lee ST (2005) Rhizobium daejeonense sp. nov. isolated from a cyanide treatment bioreactor. Int J Syst Evol Microbiol 55:2543–2549Google Scholar
  35. Ramana CV, Parag B, Girija KR, Ram BR, Ramana VV, Sasikala C (2013) Rhizobium subbaraonis sp. nov., an endolithic bacterium isolated from beach sand. Int J Syst Evol Microbiol 63:581–585CrossRefPubMedGoogle Scholar
  36. Ravenscroft P, McArthur JM, Hoque BA (2001) Geochemical and palaeohydrological controls on pollution of groundwater by arsenic. In: Chappell WR, Abernathy CO, Calderon R (eds) Arsenic exposure and health effects IV. Elsevier Science, Oxford, pp 53–78Google Scholar
  37. Rosselló-Mora R, Amann R (2001) The species concept for prokaryotes. FEMS Microbiol Rev 25:39–67CrossRefPubMedGoogle Scholar
  38. Rowland HAL, Polya DA, Lloyd JR, Pancost RD (2006) Characterisation of organic matter in a shallow, reducing, arsenic-rich aquifer, West Bengal. Org Geochem 37:1101–1114CrossRefGoogle Scholar
  39. Saltikov CW, Newman DK (2003) Genetic identification of a respiratory arsenate reductase. Proc Natl Acad Sci USA 100:10983–10988CrossRefPubMedPubMedCentralGoogle Scholar
  40. Saltikov CW, Cifuentes A, Venkateswaran K, Newman DK (2003) The ars Detoxification System Is Advantageous but Not Required for As(V) Respiration by the Genetically Tractable Shewanella Species Strain ANA-3. Appl Environ Microbiol 69:2800–2809Google Scholar
  41. Sambrook J, Russel DW (2001) Rapid isolation of yeast DNA. In: Sambrook J, Russel DW (eds) Molecular cloning, a laboratory manual. Cold Spring Harbor Laboratory, New York, pp 631–632Google Scholar
  42. Sarkar A, Kazy SK, Sar P (2013) Characterization of arsenic resistant bacteria from arsenic rich groundwater of West Bengal, India. Ecotoxicology 22:363–376CrossRefPubMedGoogle Scholar
  43. Sarkar A, Kazy SK, Sar P (2014) Studies on arsenic transforming groundwater bacteria and their role in arsenic release from subsurface sediment. Environ Sci Pollut Res 21:8645–8866CrossRefGoogle Scholar
  44. Sheu SY, Huang HW, Young CC, Chen WM (2015) Rhizobium alvei sp. nov., isolated from a freshwater river. In J Syst Evol Microbiol 65:472–478CrossRefGoogle Scholar
  45. Smibert RM, Krieg NR (1994) Phenotypic characterization. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington DC, pp 607–654Google Scholar
  46. Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849CrossRefGoogle Scholar
  47. Tighe SW, de Lajudie P, Dipietro K, Lindstro MK, Nick G, Jarvis BD (2000) Analysis of cellular fatty acids and phenotypic relationships of Agrobacterium, Bradyrhizobium, Mesorhizobium, Rhizobium and Sinorhizobium species using the Sherlock Microbial Identification System. Int J Syst Evol Microbiol 50:787–801CrossRefPubMedGoogle Scholar
  48. Viteri SE, Schmidt EL (1987) Ecology of indigenous soil rhizobia: response of Bradyrhizobium japonicum to readily available substrates. Appl Environ Microbiol 53:1872–1875PubMedPubMedCentralGoogle Scholar
  49. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE et al (1987) International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464CrossRefGoogle Scholar
  50. Young JM, Kuykendall ID, Martínez-Romero E, Kerr A, Sawada HA et al (2001) A revision of Rhizobium Frank 1889, with an emended description of the genus, and the inclusion of all species of Agrobacterium Conn 1942 and Allorhizobium undicola de Lajudie et al. 1998 as new combinations: Rhizobium radiobacter, R. rhizogenes, R. rubi, R. undicola and R. vitis. Int J Syst Evol Microbiol 51:89–103CrossRefPubMedGoogle Scholar
  51. Zhang GX, Ren SZ, Xu MY, Zeng GQ, Luo HD, Chen JL, Tan ZY, Sun GP (2011) Rhizobium borbori sp. nov., aniline-degrading bacteria isolated from activated sludge. Int J Syst Evol Microbiol 61:816–822CrossRefPubMedGoogle Scholar
  52. Zhang X, Li B, Wang H, Sui X, Ma X, Hong Q, Jiang R (2012) Rhizobium petrolearium sp. nov., isolated from oil-contaminated soil. Int J Syst Evol Microbiol 62:1871–1876CrossRefPubMedGoogle Scholar
  53. Zhu YG, Yoshinaga M, Zhao FJ, Rosen BP (2014) Earth abides arsenic biotransformations. Annu Rev Earth Planet Sci 42:443–467CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of BiotechnologyIndian Institute of Technology (IIT)KharagpurIndia
  2. 2.Department of MicrobiologyUniversity of Delhi South Campus (UDSC)New DelhiIndia
  3. 3.Department of BiotechnologyNational Institute of Technology (NIT)DurgapurIndia

Personalised recommendations