Advertisement

Archives of Microbiology

, Volume 198, Issue 8, pp 767–771 | Cite as

Sphingomonas hankyongensis sp. nov. isolated from tap water

  • Sung-Sik Yun
  • Muhammad Zubair Siddiqi
  • Soon-Youl Lee
  • Minseok S. Kim
  • KangDuk Choi
  • Wan-Taek ImEmail author
Original Paper

Abstract

A Gram reaction-negative, strictly aerobic, non-motile, translucent and rod-shaped bacterium (designated W1-2-4T) isolated from tap water was characterized by a polyphasic approach to clarify its taxonomic position. Strain W1-2-4T was observed to grow optimally at 25–30 °C and at pH 6.5 on nutrient agar. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain W1-2-4T belongs to the genus Sphingomonas and is most closely related to the Sphingomonas fennica K101T (95.3 % similarity). The G+C content of genomic DNA was 67.1 mol%. Chemotaxonomic data [major ubiquinone—Q-10, major polyamine—homospermidine, major fatty acids—summed feature 8 (comprising C18:1 ω7c/ω6c), C16:0 and C14:0 2OH] supported the affiliation of strain W1-2-4T to the genus Sphingomonas. Strain W1-2-4T could be differentiated genotypically and phenotypically from the recognized species of the genus Sphingomonas. The novel isolate therefore represents a novel species, for which the name Sphingomonas hankyongensis sp. nov. is proposed, with the type strain W1-2-4T (=KACC 18308T = LMG 28595T).

Keywords

Sphingomonas hankyongensis 16S rRNA sequence Polyphasic taxonomy Tap water 

Notes

Acknowledgments

This research was supported by the project on survey and excavation of Korean indigenous species of the National Institute of Biological Resources (NIBR) under the Ministry of Environment, Korea.

Supplementary material

203_2016_1237_MOESM1_ESM.pptx (98 kb)
Scanning electron micrograph of strain W1-2-4T. (PPTX 98 kb)
203_2016_1237_MOESM2_ESM.pptx (223 kb)
Two-dimensional thin-layer chromatography of polar lipids of strain W1-2-4T. Chloroform/methanol/water (65:25:4, by vol.) was used in the first direction, followed by chloroform/acetic acid/methanol/water (80:15:12:4, by vol.) in the second direction. The 5 % ethanolic molybdophosphoric acid spray reagents were used to detect total lipids; abbreviations: DPG, diphosphatidylglycerol; PG, phosphatidylglycerol; PE, phosphatidylethanolamine; PC, phosphatidylcholine; SGL, sphingoglycolipid; L1–L3, unidentified lipids. (PPTX 223 kb)
203_2016_1237_MOESM3_ESM.docx (17 kb)
Supplementary material 3 (DOCX 16 kb)

References

  1. An DS, Liu QM, Lee HG, Jung MS, Kim SC, Lee ST, Im WT (2013) Sphingomonas ginsengisoli sp. nov. and Sphingomonas sediminicola sp. nov. Int J Syst Evol Microbiol 63:496–501CrossRefPubMedGoogle Scholar
  2. Atlas RM (1993) Handbook of microbiological media. CRC Press, Boca RatonGoogle Scholar
  3. Buck JD (1982) Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Appl Environ Microbiol 44:992–993PubMedPubMedCentralGoogle Scholar
  4. Cappuccino JG, Sherman N (2002) Microbiology: a laboratory manual, 6th edn. Pearson Education Inc, CaliforniaGoogle Scholar
  5. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376CrossRefPubMedGoogle Scholar
  6. Felsenstein J (1985) Confidence limit on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  7. Feng GD, Yang SZ, Wang YH, Zhao GZ, Deng MR, Zhu HH (2014) Sphingomonas gimensis sp. nov., a novel gram-negative bacterium isolated from abandoned lead-zinc ore mine. Antonie Van Leeuwenhoek 105:1091–1097CrossRefPubMedGoogle Scholar
  8. Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416CrossRefGoogle Scholar
  9. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  10. Han SI, Lee JC, Ohta H, Whang KS (2014) Sphingomonas oligoaromativorans sp. nov., an oligotrophic bacterium isolated from a forest soil. Int J Syst Evol Microbiol 64:1679–1684CrossRefPubMedGoogle Scholar
  11. Hiraishi A, Ueda Y, Ishihara J, Mori T (1996) Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 42:457–469CrossRefGoogle Scholar
  12. Huy H, Jin L, Lee KC, Kim SG, Lee JS, Ahn CY, Oh HM (2014) Sphingomonas daechungensis sp. nov., isolated from sediment of a eutrophic reservoir. Int J Syst Evol Microbiol 64:1412–1418CrossRefPubMedGoogle Scholar
  13. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH, Yi H, Won S, Chun J (2012) Introducing eztaxon-e: a prokaryotic 16 s rrna gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721CrossRefPubMedGoogle Scholar
  14. Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  15. Mesbah M, Premachandran U, Whitman W (1989) Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. Int J Syst Bacteriol 39:159–167CrossRefGoogle Scholar
  16. Minnikin DE, Patel PV, Alshamaony L, Goodfellow M (1977) Polar lipid composition in the classification of Nocardia and related bacteria. Int J Syst Bacteriol 27:104–117CrossRefGoogle Scholar
  17. Moore DD, Dowhan D (1995) Preparation and analysis of DNA. In: Ausubel FW, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (eds) Current protocols in molecular biology. Wiley, New York, pp 2–11Google Scholar
  18. Park HK, Han JH, Kim TS, Joung Y, Cho SH, Kwon SW, Kim SB (2015) Sphingomonas aeria sp. nov. from indoor air of a pharmaceutical environment. Antonie Van Leeuwenhoek 107:47–53CrossRefPubMedGoogle Scholar
  19. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  20. Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. MIDI technical note 101. MIDI Inc, NewarkGoogle Scholar
  21. Schenkel E, Berlaimont V, Dubois J, Helson-Cambier M, Hanocq M (1995) Improved high-performance liquid chromatographic method for the determination of polyamines as their benzoylated derivatives: application to P388 cancer cells. J Chromatogr B 668:189–197CrossRefGoogle Scholar
  22. Son HM, Kook M, Tran HT, Kim KY, Park SY, Kim JH, Yi TH (2014) Sphingomonas kyeonggiense sp. nov., isolated from soil of a ginseng field. Antonie Van Leeuwenhoek 105:791–797CrossRefPubMedGoogle Scholar
  23. Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849CrossRefGoogle Scholar
  24. Takeuchi M, Hamana K, Hiraishi A (2001) Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 51:1405–1417CrossRefPubMedGoogle Scholar
  25. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) Mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729CrossRefPubMedPubMedCentralGoogle Scholar
  26. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882CrossRefPubMedPubMedCentralGoogle Scholar
  27. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bact 173:697–703PubMedPubMedCentralGoogle Scholar
  28. Wittich RM, Busse HJ, Kämpfer P, Macedo AJ, Tiirola M, Wieser M, Abraham WR (2007) Sphingomonas fennica sp. nov. and sphingomonas haloaromaticamans sp. nov., outliers of the genus Sphingomonas. Int J Syst Evol Microbiol 57:1740–1746CrossRefPubMedGoogle Scholar
  29. Yabuuchi E, Yano I, Oyaizu H, Hashimoto Y, Ezaki T, Yamamoto H (1990) Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas. Microbiol Immunol 34:99–119CrossRefPubMedGoogle Scholar
  30. Zhu L, Si M, Li C, Xin K, Chen C, Shi X, Huang R, Zhao L, Shen X, Zhang L (2015) Sphingomonas gei sp. nov., isolated from roots of geum aleppicum. Int J Syst Evol Microbiol 65:1160–1166CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Sung-Sik Yun
    • 1
    • 2
  • Muhammad Zubair Siddiqi
    • 1
    • 2
  • Soon-Youl Lee
    • 1
    • 2
  • Minseok S. Kim
    • 3
  • KangDuk Choi
    • 1
    • 2
  • Wan-Taek Im
    • 1
    • 2
    Email author
  1. 1.Department of BiotechnologyHankyong National UniversityAnseong-siRepublic of Korea
  2. 2.Genomic Informatics CenterHankyong National UniversityAnseong-siRepublic of Korea
  3. 3.Department of Biomedical EngineeringKonyang UniversityNonsanRepublic of Korea

Personalised recommendations