Archives of Microbiology

, Volume 198, Issue 5, pp 409–421 | Cite as

PpsA-mediated alternative pathway to complement RNase E essentiality in Escherichia coli

  • Masaru Tamura
  • Naoko Honda
  • Hirofumi Fujimoto
  • Stanley N. Cohen
  • Atsushi Kato
Original Paper


Escherichia coli cells require RNase E, encoded by the essential gene rne, to propagate. The growth properties on different carbon sources of E. coli cells undergoing suppression of RNase E production suggested that reduction in RNase E is associated with decreased expression of phosphoenolpyruvate synthetase (PpsA), which converts pyruvate to phosphoenolpyruvate during gluconeogenesis. Western blotting and genetic complementation confirmed the role of RNase E in PpsA expression. Adventitious ppsA overexpression from a multicopy plasmid was sufficient to restore colony formation of ∆rneE. coli on minimal media containing glycerol or succinate as the sole carbon source. Complementation of ∆rne by ppsA overproduction was observed during growth on solid media but was only partial, and bacteria showed slowed cell division and grew as filamentous chains. We found that restoration of colony-forming ability by ppsA complementation occurred independent of the presence of endogenous RNase G or second-site suppressors of RNase E essentiality. Our investigations demonstrate the role of phosphoryl transfer catalyzable by PpsA as a determinant of RNase E essentiality in E. coli.


Ribonuclease E RNase E Gluconeogenesis ppsA Phosphotransferase 

Supplementary material

203_2016_1201_MOESM1_ESM.pdf (4.2 mb)
Supplementary material 1 (PDF 4288 kb)


  1. Alifano P, Rivellini F, Piscitelli C, Arraiano CM, Bruni CB, Carlomagno MS (1994) Ribonuclease E provides substrates for ribonuclease P-dependent processing of a polycistronic mRNA. Genes Dev 8:3021–3031CrossRefPubMedGoogle Scholar
  2. Anupama K, Leela JK, Gowrishankar J (2011) Two pathways for RNase E action in Escherichia coli in vivo and bypass of its essentiality in mutants defective for Rho-dependent transcription termination. Mol Microbiol 82:1330–1348CrossRefPubMedGoogle Scholar
  3. Apirion D (1978) Isolation, genetic mapping and some characterization of a mutation in Escherichia coli that affects the processing of ribonuleic acid. Genetics 90:659–671PubMedPubMedCentralGoogle Scholar
  4. Apirion D, Ghora BK, Plautz G, Misra TK, Gegenheimer P (1980) Processing of rRNA and tRNA in Escherichia coli: cooperation between processing enzymes. In Transfer RNA: biological aspects. Cold Spring Harbor Laboratory, New York, pp 139–154Google Scholar
  5. Baba T et al (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2(2006):0008PubMedGoogle Scholar
  6. Berman KM, Cohn M (1970) Phosphoenolpyruvate synthetase of Escherichia coli. Purification, some properties, and the role of divalent metal ions. J Biol Chem 245:5309–5318PubMedGoogle Scholar
  7. Bernstein JA, Khodursky AB, Lin PH, Lin-Chao S, Cohen SN (2002) Global analysis of mRNA decay and abundance in Escherichia coli at single-gene resolution using two-color fluorescent DNA microarrays. Proc Natl Acad Sci USA 99:9697–9702CrossRefPubMedPubMedCentralGoogle Scholar
  8. Brice CB, Kornberg HL (1967) Location of a gene specifying phosphopyruvate synthase activity on the genome of Escherichia coli, K12. Proc R Soc Lond B Biol Sci 168:281–292CrossRefPubMedGoogle Scholar
  9. Cam K, Rome G, Krisch HM, Bouche JP (1996) RNase E processing of essential cell division genes mRNA in Escherichia coli. Nucleic Acids Res 24:3065–3070CrossRefPubMedPubMedCentralGoogle Scholar
  10. Chao YP, Patnaik R, Roof WD, Young RF, Liao JC (1993) Control of gluconeogenic growth by pps and pck in Escherichia coli. J Bacteriol 175:6939–6944PubMedPubMedCentralGoogle Scholar
  11. Cherepanov PP, Wackernagel W (1995) Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. Gene 158:9–14CrossRefPubMedGoogle Scholar
  12. Chung DH, Min Z, Wang BC, Kushner SR (2010) Single amino acid changes in the predicted RNase H domain of Escherichia coli RNase G lead to complementation of RNase E deletion mutants. RNA 16:1371–1385CrossRefPubMedPubMedCentralGoogle Scholar
  13. Cohen SN, Chang AC, Boyer HW, Helling RB (1973) Construction of biologically functional bacterial plasmids in vitro. Proc Natl Acad Sci USA 70:3240–3244CrossRefPubMedPubMedCentralGoogle Scholar
  14. Cooper RA, Kornberg HL (1965) Net formation of phosphoenolpyruvate from pyruvate by Escherichia coli. Biochim Biophys Acta 104:618–620CrossRefPubMedGoogle Scholar
  15. Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97:6640–6645CrossRefPubMedPubMedCentralGoogle Scholar
  16. Deana A, Belasco JG (2004) The function of RNase G in Escherichia coli is constrained by its amino and carboxyl termini. Mol Microbiol 51:1205–1217CrossRefPubMedGoogle Scholar
  17. Ghora BK, Apirion D (1978) Structural analysis and in vitro processing to p5 rRNA of a 9S RNA molecule isolated from an rne mutant of E. coli. Cell 15:1055–1066CrossRefPubMedGoogle Scholar
  18. Goldblum K, Apririon D (1981) Inactivation of the ribonucleic acid-processing enzyme ribonuclease E blocks cell division. J Bacteriol 146:128–132PubMedPubMedCentralGoogle Scholar
  19. Goldie AH, Sanwal BD (1980) Genetic and physiological characterization of Escherichia coli mutants deficient in phosphoenolpyruvate carboxykinase activity. J Bacteriol 141:1115–1121PubMedPubMedCentralGoogle Scholar
  20. Hammarlof DL, Bergman JM, Garmendia E, Hughes D (2015) Turnover of mRNAs is one of the essential functions of RNase E. Mol Microbiol 98:34–45CrossRefPubMedGoogle Scholar
  21. Joyce AR, Reed JL, White A et al (2006) Experimental and computational assessment of conditionally essential genes in Escherichia coli. J Bacteriol 188:8259–8271CrossRefPubMedPubMedCentralGoogle Scholar
  22. Kang KS, Veeder GT, Mirrasoul PJ, Kaneko T, Cottrell IW (1982) Agar-like polysaccharide produced by a pseudomonas species: production and basic properties. Appl Environ Microbiol 43:1086–1091PubMedPubMedCentralGoogle Scholar
  23. Kee JM, Oslund RC, Perlman DH, Muir TW (2013) A pan-specific antibody for direct detection of protein histidine phosphorylation. Nat Chem Biol 9:416–421CrossRefPubMedPubMedCentralGoogle Scholar
  24. Khemici V, Poljak L, Toesca I, Carpousis AJ (2005) Evidence in vivo that the DEAD-box RNA helicase RhlB facilitates the degradation of ribosome-free mRNA by RNase E. Proc Natl Acad Sci USA 102:6913–6918CrossRefPubMedPubMedCentralGoogle Scholar
  25. Lee K, Cohen SN (2003) A Streptomyces coelicolor functional orthologue of Escherichia coli RNase E shows shuffling of catalytic and PNPase-binding domains. Mol Microbiol 48:349–360CrossRefPubMedGoogle Scholar
  26. Lee K, Bernstein JA, Cohen SN (2002) RNase G complementation of rne null mutation identifies functional interrelationships with RNase E in Escherichia coli. Mol Microbiol 43:1445–1456CrossRefPubMedGoogle Scholar
  27. Li Z, Pandit S, Deutscher MP (1999) RNase G (CafA protein) and RNase E are both required for the 5′ maturation of 16S ribosomal RNA. EMBO J 18:2878–2885CrossRefPubMedPubMedCentralGoogle Scholar
  28. Lin-Chao S, Cohen SN (1991) The rate of processing and degradation of antisense RNAI regulates the replication of ColE1-type plasmids in vivo. Cell 65:1233–1242CrossRefPubMedGoogle Scholar
  29. Lopez PJ, Marchand I, Joyce SA, Dreyfus M (1999) The C-terminal half of RNase E, which organizes the Escherichia coli degradosome, participates in mRNA degradation but not rRNA processing in vivo. Mol Microbiol 33:188–199CrossRefPubMedGoogle Scholar
  30. Lundberg U, Altman S (1995) Processing of the precursor to the catalytic RNA subunit of RNase P from Escherichia coli. RNA 1:327–334PubMedPubMedCentralGoogle Scholar
  31. Mackie GA (2013) RNase E: at the interface of bacterial RNA processing and decay. Nat Rev Microbiol 11:45–57CrossRefPubMedGoogle Scholar
  32. Marr AG (1991) Growth rate of Escherichia coli. Microbiol Rev 55:316–333PubMedPubMedCentralGoogle Scholar
  33. McDowall KJ, Cohen SN (1996) The N-terminal domain of the rne gene product has RNase E activity and is non-overlapping with the arginine-rich RNA-binding site. J Mol Biol 255:349–355CrossRefPubMedGoogle Scholar
  34. Miczak A, Kaberdin VR, Wei CL, Lin-Chao S (1996) Proteins associated with RNase E in a multicomponent ribonucleolytic complex. Proc Natl Acad Sci USA 93:3865–3869CrossRefPubMedPubMedCentralGoogle Scholar
  35. Moll I, Afonyushkin T, Vytvytska O, Kaberdin VR, Blasi U (2003) Coincident Hfq binding and RNase E cleavage sites on mRNA and small regulatory RNAs. RNA 9:1308–1314CrossRefPubMedPubMedCentralGoogle Scholar
  36. Morita T, Kawamoto H, Mizota T, Inada T, Aiba H (2004) Enolase in the RNA degradosome plays a crucial role in the rapid decay of glucose transporter mRNA in the response to phosphosugar stress in Escherichia coli. Mol Microbiol 54:1063–1075CrossRefPubMedGoogle Scholar
  37. Morita T, Maki K, Aiba H (2005) RNase E-based ribonucleoprotein complexes: mechanical basis of mRNA destabilization mediated by bacterial noncoding RNAs. Genes Dev 19:2176–2186CrossRefPubMedPubMedCentralGoogle Scholar
  38. Narindrasorasak S, Bridger WA (1977) Phosphoenolypyruvate synthetase of Escherichia coli: molecular weight, subunit composition, and identification of phosphohistidine in phosphoenzyme intermediate. J Biol Chem 252:3121–3127PubMedGoogle Scholar
  39. Neidhardt FC, Bloch PL, Smith DF (1974) Culture medium for enterobacteria. J Bacteriol 119:736–747PubMedPubMedCentralGoogle Scholar
  40. Ono M, Kuwano M (1979) A conditional lethal mutation in an Escherichia coli strain with a longer chemical lifetime of messenger RNA. J Mol Biol 129:343–357CrossRefPubMedGoogle Scholar
  41. Ow MC, Kushner SR (2002) Initiation of tRNA maturation by RNase E is essential for cell viability in E. coli. Genes Dev 16:1102–1115CrossRefPubMedPubMedCentralGoogle Scholar
  42. Ow MC, Liu Q, Kushner SR (2000) Analysis of mRNA decay and rRNA processing in Escherichia coli in the absence of RNase E-based degradosome assembly. Mol Microbiol 38:854–866CrossRefPubMedGoogle Scholar
  43. Prud’homme-Genereux A, Beran RK, Iost I, Ramey CS, Mackie GA, Simons RW (2004) Physical and functional interactions among RNase E, polynucleotide phosphorylase and the cold-shock protein, CsdA: evidence for a ‘cold shock degradosome’. Mol Microbiol 54:1409–1421CrossRefPubMedGoogle Scholar
  44. Py B, Higgins CF, Krisch HM, Carpousis AJ (1996) A DEAD-box RNA helicase in the Escherichia coli RNA degradosome. Nature 381:169–172CrossRefPubMedGoogle Scholar
  45. Ray A, Apirion D (1980) Cloning the gene for ribonuclease E, an RNA processing enzyme. Gene 12:87–94CrossRefPubMedGoogle Scholar
  46. Ray BK, Apirion D (1981) Transfer RNA precursors are accumulated in Escherichia coli in the absence of RNase E. Eur J Biochem 114:517–524CrossRefPubMedGoogle Scholar
  47. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. CSHL Press, Cold Spring HarborGoogle Scholar
  48. Sauer U, Eikmanns BJ (2005) The PEP–pyruvate–oxaloacetate node as the switch point for carbon flux distribution in bacteria. FEMS Microbiol Rev 29:765–794CrossRefPubMedGoogle Scholar
  49. Schein A, Sheffy-Levin S, Glaser F, Schuster G (2008) The RNase E/G-type endoribonuclease of higher plants is located in the chloroplast and cleaves RNA similarly to the E. coli enzyme. RNA 14:1057–1068CrossRefPubMedPubMedCentralGoogle Scholar
  50. Shungu D, Valiant M, Tutlane V et al (1983) GELRITE as an agar substitute in bacteriological media. Appl Environ Microbiol 46:840–845PubMedPubMedCentralGoogle Scholar
  51. Singh D, Chang SJ, Lin PH, Averina OV, Kaberdin VR, Lin-Chao S (2009) Regulation of ribonuclease E activity by the L4 ribosomal protein of Escherichia coli. Proc Natl Acad Sci USA 106:864–869CrossRefPubMedPubMedCentralGoogle Scholar
  52. Spring TG, Wold F (1971) The purification and characterization of Escherichia coli enolase. J Biol Chem 246:6797–6802PubMedGoogle Scholar
  53. Stead MB, Marshburn S, Mohanty BK et al (2010) Analysis of Escherichia coli RNase E and RNase III activity in vivo using tiling microarrays. Nucleic Acids Res 39:3188–3203CrossRefPubMedPubMedCentralGoogle Scholar
  54. Tamura M, Lee K, Miller CA et al (2006) RNase E maintenance of proper FtsZ/FtsA ratio required for nonfilamentous growth of Escherichia coli cells but not for colony-forming ability. J Bacteriol 188:5145–5152CrossRefPubMedPubMedCentralGoogle Scholar
  55. Tamura M, Kers JA, Cohen SN (2012) Second-site suppression of RNase E essentiality by mutation of the deaD RNA helicase in Escherichia coli. J Bacteriol 194:1919–1926CrossRefPubMedPubMedCentralGoogle Scholar
  56. Tamura M, Moore CJ, Cohen SN (2013) Nutrient dependence of RNase E essentiality in Escherichia coli. J Bacteriol 195:1133–1141CrossRefPubMedPubMedCentralGoogle Scholar
  57. Vanderpool CK, Gottesman S (2005) Noncoding RNAs at the membrane. Nat Struct Mol Biol 12:285–286CrossRefPubMedGoogle Scholar
  58. Wachi M, Umitsuki G, Nagai K (1997) Functional relationship between Escherichia coli RNase E and the CafA protein. Mol Gen Genet 253:515–519CrossRefPubMedGoogle Scholar
  59. Wachi M, Umitsuki G, Shimizu M, Takada A, Nagai K (1999) Escherichia coli cafA gene encodes a novel RNase, designated as RNase G, involved in processing of the 5′ end of 16S rRNA. Biochem Biophys Res Commun 259:483–488CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Masaru Tamura
    • 1
  • Naoko Honda
    • 1
  • Hirofumi Fujimoto
    • 1
  • Stanley N. Cohen
    • 2
  • Atsushi Kato
    • 1
  1. 1.Department of Quality Assurance and Radiological ProtectionNational Institute of Infectious DiseasesTokyoJapan
  2. 2.Departments of Genetics and Medicine, School of MedicineStanford UniversityStanfordUSA

Personalised recommendations