Archives of Microbiology

, Volume 198, Issue 5, pp 423–427 | Cite as

Aeromicrobium halotolerans sp. nov., isolated from desert soil sample

  • Zheng-Fei Yan
  • Pei Lin
  • Xiao Chu
  • MooChang Kook
  • Chang-Tian LiEmail author
  • Tae-Hoo YiEmail author
Original Paper


A Gram-positive, aerobic, and non-motile, rod-shaped actinomycete strain, designated YIM Y47T, was isolated from soils collected from Turpan desert, China, and subjected to a polyphasic taxonomic study. Phylogenetic analysis indicated that strain YIM Y47T belonged to the genus Aeromicrobium. YIM Y47T shared highest 16S rRNA gene sequence similarities with Aeromicrobium massiliense JC14T (96.47 %). Growth occurs at 20–45 °C (optimum at 30 °C), pH 6.0–8.0 (optimum at pH 7.0), and salinities of 0–7.0 % NaCl (optimum at 4.0 %). The strain YIM Y47T exhibits chemotaxonomic features with menaquinone-7 (MK-7) as the predominant quinone, C16:0, C18:1 ω9c and 10-methyl C18:0 (>10 %) as major fatty acids. The cell-wall peptidoglycan of strain YIM Y47T contained ll-diaminopimelic acid as the diagnostic diamino acid. The polar lipids were found to consist of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, and unknown phospholipids. The G+C content of the genomic DNA of strain YIM Y47T was found to be 44.7 mol%. On the basis of phylogenetic analyses and phenotypic data, it is proposed that strain YIM Y47T should be classified as representing a novel species of the genus Aeromicrobium, with the name Aeromicrobium halotolerans sp. nov. The type strain is YIM Y47T (=KCTC 39113T=CGMCC 1.15063T=DSM 29939T=JCM 30627T).


Aeromicrobiumhalotolerans sp. nov. Turpan desert Polyphasic taxonomy 



The authors are grateful to Prof. Dr. Hans Peter Klenk (DSMZ, Germany) for providing the reference type strains and Prof. Dr. Wen-Jun Li (Yunnan University, China) for experimental guidance. This research work was supported by Key Project of China Ministry of Science and Technology (2013BAD16B05).

Supplementary material

203_2016_1196_MOESM1_ESM.docx (2.9 mb)
Supplementary material 1 (DOCX 3003 kb)


  1. Bruns A, Philipp H, Cypionka H, Brinkhoff T (2003) Aeromicrobium marinum sp. nov., an abundant pelagic bacterium isolated from the German Wadden Sea. Int J Syst Evol Microbiol 53:1917–1923CrossRefPubMedGoogle Scholar
  2. Buck JD (1982) Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Appl Environ Microbiol 44:992–993PubMedPubMedCentralGoogle Scholar
  3. Chen WM, Lin YS, Sheu DS, Sheu SY (2012) Delftia litopenaei sp. nov., a poly-β-hydroxybutyrate-accumulating bacterium isolated from a freshwater shrimp culture pond. Int J Syst Evol Microbiol 62:2315–2321CrossRefPubMedGoogle Scholar
  4. Chun J, Lee JH, Jung Y, Kim M, Kim S, Kim BK, Lim YW (2007) EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261CrossRefPubMedGoogle Scholar
  5. Collins MD, Jones D (1980) Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2,4-diaminobutyric acid. J Appl Bacteriol 48:459–470CrossRefGoogle Scholar
  6. Collins MD, Pirouz T, Goodfellow M, Minnikin DE (1977) Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 100:221–230CrossRefPubMedGoogle Scholar
  7. Cui YS, Im WT, Yin CR, Lee JS, Lee KC, Lee ST (2007) Aeromicrobium panaciterrae sp. nov., isolated from soil of a ginseng field in South Korea. Int J Syst Evol Microbiol 57:687–691CrossRefPubMedGoogle Scholar
  8. Ezaki T, Hashimoto Y, Yabuuchi E (1989) Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229CrossRefGoogle Scholar
  9. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376CrossRefPubMedGoogle Scholar
  10. Hu HY, Lim BR, Goto N, Fujie K (2001) Analytical precision and repeatability of respiratory quinones for quantitative study of microbial community structure in environmental samples. J Microbiol Methods 47:17–24CrossRefPubMedGoogle Scholar
  11. Jørgensen NO, Brandt KK, Nybroe O, Hansen M (2009) Delftia lacustris sp. nov., a peptidoglycan-degrading bacterium from fresh water, and emended description of Delftia tsuruhatensis as a peptidoglycan-degrading bacterium. Int J Syst Evol Microbiol 59:2195–2199CrossRefPubMedGoogle Scholar
  12. Kelly KL (1964) Color-name charts illustrated with centroid colors. Inter-Society Color Council-National Bureau of Standards, ChicagoGoogle Scholar
  13. Kim MK, Park MJ, Im WT, Yang DC (2008) Aeromicrobium ginsengisoli sp. nov., isolated from a ginseng field. Int J Syst Evol Microbiol 58:2025–2030CrossRefPubMedGoogle Scholar
  14. Kim SH, Yang HO, Sohn YC, Kwon HC (2010) Aeromicrobium halocynthiae sp. nov., a taurocholic acid-producing bacterium isolated from the marine ascidian Halocynthia roretzi. Int J Syst Evol Microbiol 60:2793–2798CrossRefPubMedGoogle Scholar
  15. Kluge AG, Farris JS (1969) Quantitative phyletics and the evolution of anurans. Syst Biol 18:1–32CrossRefGoogle Scholar
  16. Kovacs N (1956) Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 178:703CrossRefPubMedGoogle Scholar
  17. Kroppenstedt RM (1982) Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr 5:2359–2367CrossRefGoogle Scholar
  18. Larkin MA, Blackshields G, Brown N, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948CrossRefPubMedGoogle Scholar
  19. Lee SD, Kim SJ (2007) Aeromicrobium tamlense sp. nov., isolated from dried seaweed. Int J Syst Evol Microbiol 57:337–341CrossRefPubMedGoogle Scholar
  20. Lee DW, Lee SD (2008) Aeromicrobium ponti sp. nov., isolated from seawater. Int J Syst Evol Microbiol 58:987–991CrossRefPubMedGoogle Scholar
  21. Li WJ, Xu P, Schumann P, Zhang YQ, Pukall R, Xu LH, Stackebrandt E, Jiang CL (2007) Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia. Int J Syst Evol Microbiol 57:1424–1428CrossRefPubMedGoogle Scholar
  22. Maidak BL, Cole JR, Lilburn TG, Parker CT Jr, Saxman PR, Farris RJ, Garrity GM, Olsen GJ, Schmidt TM, Tiedje JM (2001) The RDP-II (ribosomal database project). Nucleic Acids Res 29:173–174CrossRefPubMedPubMedCentralGoogle Scholar
  23. Mesbah M, Premachandran U, Whitman WB (1989) Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167CrossRefGoogle Scholar
  24. Miller ES, Woese CR, Brenner S (1991) Description of the erythromycin-producing Bacterium Arthrobacter sp. strain NRRL B-3381 as Aeromicrobium erythreum gen. nov., sp. nov. Int J Syst Bacteriol 41:363–368CrossRefPubMedGoogle Scholar
  25. Minnikin DE, O’donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal A, Parlett JH (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241CrossRefGoogle Scholar
  26. Niu L, Xiong M, Tang T, Song L, Hu X, Zhao M, Zhang K (2015) Aeromicrobium camelliae sp. nov., isolated from Pu’er tea. Int J Syst Evol Microbiol. doi: 10.1099/ijsem.0.000583 Google Scholar
  27. Ramasamy D, Kokcha S, Lagier JC, Nguyen TT, Raoult D, Fournier PE (2012) Genome sequence and description of Aeromicrobium massiliense sp. nov. Stand Genomic Sci 7:246CrossRefPubMedPubMedCentralGoogle Scholar
  28. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  29. Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newsl 20:16Google Scholar
  30. Shigematsu T, Yumihara K, Ueda Y, Numaguchi M, Morimura S, Kida K (2003) Delftia tsuruhatensis sp. nov., a terephthalate-assimilating bacterium isolated from activated sludge. Int J Syst Evol Microbiol 53:1479–1483CrossRefPubMedGoogle Scholar
  31. Stackebrandt E, Rainey FA, Ward-Rainey NL (1997) Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol 47:479–491CrossRefGoogle Scholar
  32. Staneck JL, Roberts GD (1974) Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 28:226–231PubMedPubMedCentralGoogle Scholar
  33. Tamura T, Yokota A (1994) Transfer of Nocardioides fastidiosa Collins and Stackebrandt 1989 to the Genus Aeromicrobium as Aeromicrobium fastidiosum comb. nov. Int J Syst Bacteriol 44:608–611CrossRefGoogle Scholar
  34. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729CrossRefPubMedPubMedCentralGoogle Scholar
  35. Tang YL, Zhou GL, Zhang L, Mao J, Luo XS, Wang MX, Fang CX (2008) Aeromicrobium flavum sp. nov., isolated from air. Int J Syst Evol Microbiol 58:1860–1863CrossRefPubMedGoogle Scholar
  36. Urzì C, Salamone P, Schumann P, Stackebrandt E (2000) Marmoricola aurantiacus gen. nov., sp. nov., a coccoid member of the family Nocardioidaceae isolated from a marble statue. Int J Syst Evol Microbiol 50:529–536CrossRefPubMedGoogle Scholar
  37. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Krichevsky MI, Moore LH, Moore WEC, Murray RGE, Stackebrandt E (1987) Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464CrossRefGoogle Scholar
  38. Yoon JH, Lee CH, Oh TK (2005) Aeromicrobium alkaliterrae sp. nov., isolated from an alkaline soil, and emended description of the genus Aeromicrobium. Int J Syst Evol Microbiol 55:2171–2175CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Oriental Medicine Biotechnology, College of Life ScienceKyung Hee University Global CampusYongin-siRepublic of Korea
  2. 2.Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan Institute of MicrobiologyYunnan UniversityKunmingPeople’s Republic of China
  3. 3.Department of Marine BiotechnologyAnyang UniversityIncheonRepublic of Korea
  4. 4.Engineering Research Center of Edible and Medicinal Fungi, Ministry of EducationJilin Agricultural UniversityChangchunPeople’s Republic of China

Personalised recommendations