Advertisement

Archives of Microbiology

, Volume 197, Issue 8, pp 991–999 | Cite as

Effect of aerobic and microaerophilic culture in the growth dynamics of Saccharomyces cerevisiae and in training of quiescent and non-quiescent subpopulations

  • Rosa CarbóEmail author
  • Marta Ginovart
  • Akatibu Carta
  • Xavier Portell
  • Luis J. del Valle
Original Paper

Abstract

Saccharomyces cerevisiae is industrially the most important yeast, and its growth in different concentrations of oxygen can be used to improve various application processes. The aims of this work were to study in aerobic and microaerophilic growth conditions the cell size and tendency of morphological changes in S. cerevisiae in different stages of growth and to assess the effect of the two growth conditions in the differentiation of quiescent and non-quiescent subpopulations in the stationary phase. Dissolved oxygen levels in the culture medium for aerobic and microaerophilic conditions were 6.6 and 5.2 mg L−1, respectively. In both growth conditions, similar viable cell populations were obtained, although in aerobic conditions the stationary phase was reached and the quiescent and non-quiescent subpopulations were also differentiated. The microaerophilic growth produced a significant reduction in the specific growth rate and consequently also in glucose and oxygen consumption. The most notable changes in cellular size and morphology occurred with the depletion of glucose and oxygen. The concentration of dissolved oxygen in the culture medium significantly modulated the growth kinetics of S. cerevisiae and their development and differentiation to quiescent cells. This could justify the need to readjust small variations in oxygen levels during yeast cultures in biotechnological processes.

Keywords

Saccharomycescerevisiae Aerobic culture Microaerophilic culture Quiescent cells 

Notes

Funding

This study was funded by Ministerio de Educación y Ciencia of Spain (Plan Nacional I + D+i) through grant MICINN (CGL2010-20160) and Generalitat de Catalunya (2009SGR1208) of Spain.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Allen C, Büttner S, Aragon AD, Thomas JA, Meirelles O, Jaetao JE, Benn D, Ruby SW, Veenhuis M, Madeo F, Werner-Washburne M (2006) Isolation of quiescent and nonquiescent cells from yeast stationary-phase cultures. J Cell Biol 174(1):89–100PubMedCentralCrossRefPubMedGoogle Scholar
  2. Benbadis L, Cot M, Rigoulet M, Francois J (2009) Isolation of two cell populations from yeast during high-level alcoholic fermentation that resemble quiescent and nonquiescent cells from the stationary phase on glucose. FEMS Yeast Res 9:1172–1186CrossRefPubMedGoogle Scholar
  3. Carrasco P, Querol A, del Olmo M (2001) Analysis of the stress resistance of commercial wine yeast strains. Arch Microbiol 175(6):450–457CrossRefPubMedGoogle Scholar
  4. Cipollina C, Vai M, Porro D, Hatzis C (2007) Towards understanding of the complex structure of growing yeast populations. J Biotechnol 128:393–402CrossRefPubMedGoogle Scholar
  5. Coelho MAZ, Belo I, Pinheiro R, Amaral AL, Mota M, Coutinho JAP, Ferreira EC (2004) Effect of hyperbaric stress on yeast morphology: study by automated image analysis. Appl Microbiol Biotechnol 66:318–324CrossRefPubMedGoogle Scholar
  6. Cot M, Loret MO, François J, Benbadis L (2007) Physiological behaviour of Saccharomyces cerevisiae in aerated fed-batch fermentation for high level production of bioethanol. FEMS Yeast Res 7:22–32CrossRefPubMedGoogle Scholar
  7. Daignan-Fornier B, Sagot I (2011) Proliferation/quiescence: the controverial “aller-retour”. Cell Div 6:10. http://celldiv.com/content/6/1/10
  8. Dungrawala H, Hua J, Abraham L, Kasemsri T, McDowell A, Stilwell J, Schneider BL (2012) Identification of new cell size control genes S.cerevisiae. Cell Div 7:24. http://www.celldiv.com/content/7/1/24
  9. Ekberg J, Rautio J, Mattinen L, Vidgren V, Londesborough J, Gibson BR (2013) Adaptive evolution of the lager brewing yeast Saccharomyces pastorianus for improved growth under hyperosmotic conditions and its influence on fermentation performance. FEMS Yeast Res 13:335–349CrossRefPubMedGoogle Scholar
  10. García Sanchez R, Solodovnikova N, Wendland J (2012) Breeding of lager yeast with Saccharomyces cerevisiae improves stress resistance and fermentation performance. Yeast 29:343–355CrossRefPubMedGoogle Scholar
  11. Gibson BR, Lawrence SJ, Leclaire JPR, Powell CD, Smart KA (2007) Yeast responses to stresses associated with industrial brewery handling. FEMS Microbiol Rev 31:535–569CrossRefPubMedGoogle Scholar
  12. Hanscho M, Ruckerbauer DE, Chauhan N, Hofbauer JF, Krahulec S, Nidetzky B, Kohlwein SD, Zanghellini J, Natter K (2012) Nutritional requirements of the BY of Saccharomyces cerevisiae strains for optimum growth. FEMS Yeast Res 12:796–808CrossRefPubMedGoogle Scholar
  13. Hernández-Cortés G, Córdova-López JA, Jerrera-López EJ, Morán-Marroquín GA, Valle-Rodríguez JO, Díaz-Montaño DM (2009) Effect of pH, aeration and feeding non-sterilized agave juice in a continuous agave juice fermentation. JSc Food Agric 90:1423–1428CrossRefGoogle Scholar
  14. Jouhten P, Rintala E, Huuskonen A, Tamminen A, Toivari M, Wiebe M, Ruohonen L, Penttilä M, Maaheimo H (2008) Oxygen dependence of metabolic fluxes and energy generation of Saccharomyces cerevisiae CEN.PK1 13-IA. BMC Syst Biol 2:60. doi: 10.1186/1752-0509-2-60 PubMedCentralCrossRefPubMedGoogle Scholar
  15. Kyung-Mi Yang, Na-Rae Le, Ji-Min Woo, Wonja Choi, Martin Zimmermann, Blank Lars M, Jin-Byung Park (2012) Ethanol reduces mitochondrial membrane integrity and thereby impacts carbon metabolism of Saccharomyces cerevisiae. FEMS Yeast Res 12:675–684CrossRefGoogle Scholar
  16. Morales P, Rojas V, Quirós M, González R (2015) The impact of oxygen on the final alcohol content of wine fermented by a mixed starter culture. Appl Microbiol Biotechnol 99:3993–4003PubMedCentralCrossRefPubMedGoogle Scholar
  17. Pham TH, Mauvais G, Vergoignan C, De Coninck J, Lherminier J, Cachon R, Feron G (2008) Gaseous environments modify physiology in the brewing yeast Saccharomyces cerevisiae during batch alcoholic fermentation. J Appl Microbiol 105:858–874CrossRefPubMedGoogle Scholar
  18. Porro D, Brambilla L, Alberghina L (2003) Glucosa metabolism and cell size in continuous cultures of Saccharomyces cerevisiae. FEMS Microbiol Lett 229:165–171CrossRefPubMedGoogle Scholar
  19. Portell X, Ginovart M, Carbó R, Vives-Rego J (2011a) Differences in stationary-phase cells of a commercial Saccharomyces cerevisiae wine yeast grown in aerobic and microaerophilic batch cultures assessed by electric particle analysis, light diffraction and flow cytometry. J Ind Microbiol Biotech 38:141–151CrossRefGoogle Scholar
  20. Portell X, Ginovart M, Carbó R, Gras A, Vives-Rego J (2011b) Population analysis of a commercial Saccharomyces cerevisiae wine yeast in a batch culture by electric particle analysis, light diffraction and flow cytometry. FEMS Yeast Res 11:18–28CrossRefPubMedGoogle Scholar
  21. Powell CD, Van Zandycke SM, Quain DE, Smart KA (2000) Replicative ageing and senescence in Saccharomyces cerevisiae and the impact on brewing fermentations. Microbiology 146:1023–1034CrossRefPubMedGoogle Scholar
  22. Powell CD, Quain DE, Smart A (2003) Chitin scar breaks in aged Saccharomyces cerevisiae. Microbiology 149:3129–3137CrossRefPubMedGoogle Scholar
  23. Ribéreau-Gayon P, Dubourdieu D, Donèche B, Lonvaud A (2000) Handbook of enology. The microbiology of wine and vinifications. Wiley, LTD, NewYork. ISBN 0471973629Google Scholar
  24. Schneider BL, Zhang J, Markwardt J, Tokiwa G, Volpe T, Honey S, Futcher B (2004) Growth rate and cell size modulate the synthesis of, and requirement for, G1-phase cyclins at start. Mol Cel Biol 24:10802–10813CrossRefGoogle Scholar
  25. Tibayrenc P, Preziosi-Belloy L, Ghommidh Ch (2011) Single-cell analysis of S. cerevisiae growth recovery after a sublethal heat-stress applied during an alcoholic fermentation. J Ind Microbiol Biotechnol 38:687–696CrossRefPubMedGoogle Scholar
  26. Urbanczyk H, Noguchi C, Wu H, Watanabe D, Akao T, Takagi H, Shimoi H (2011) Sake yeast strains have difficulty in entering a quiescent state after cell growth cessation. J Biosci Bioeng 112(1):44–48CrossRefPubMedGoogle Scholar
  27. Verbelen PJ, Depraetere SA, Winderickx J, Delvaux FR, Delvaux F (2009) The influence of yeast oxygenation prior to brewery fermentation on yeast metabolism and the oxidative stress response. FEMS Yeast Res 9:226–239CrossRefPubMedGoogle Scholar
  28. Wiebe MG, Rintala E, Tamminen A, Simolin H, Salusjarvi L, Toivari M, Kokkonen JT, Kiuru J, Ketola RA, Jouhten P, Huuskonen A, Maaheimo H, Ruohonen L, Penttilä M (2008) Central carbon metabolism of Saccharomyces cerevisiae in anaerobic, oxygen-limited and fully aerobic steady-state conditions and following a shift to anaerobic conditions. FEMS Yeast Res 8:140–154CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Rosa Carbó
    • 1
    Email author
  • Marta Ginovart
    • 2
  • Akatibu Carta
    • 1
  • Xavier Portell
    • 1
  • Luis J. del Valle
    • 3
  1. 1.Department of Agri-Food Engineering and BiotechnologyUniversitat Politècnica de CatalunyaCastelldefels, BarcelonaSpain
  2. 2.Department of Applied Mathematics IIIUniversitat Politècnica de CatalunyaCastelldefels, BarcelonaSpain
  3. 3.Department of Chemical Engineering, Molecular Biotechnology Center (CEBIM), ETSEIBUniversitat Politècnica de CatalunyaBarcelonaSpain

Personalised recommendations