Archives of Microbiology

, Volume 197, Issue 6, pp 861–867 | Cite as

Hopanoid inventory of Rhodoplanes spp.

  • Tushar Dilipchand Lodha
  • Are Srinivas
  • Chintalapati Sasikala
  • Chintalapati Venkata Ramana
Short Communication


Hopanoids are pentacyclic triterpenoid lipids and are important for bacterial membrane stability and functioning. These pentacyclic triterpenoids of hopane series are biomarkers for eubacteria and can be used as chemotaxonomic markers. Anoxygenic phototrophic bacteria are good producers of hopanoids, and their inventory to date is restricted to a few members. Rhodoplanes spp. are phototrophic prokaryotes which grow and thrive in subsurface and sediment environments. A study on the diversity of hopanoids of several species of Rhodoplanes revealed a rich diversity of hopanoids with carbon length of C30/C31 and C35. Hop-22(29)-ene (II), diplopterol (V), tetrahymanol (VII), 2-methyldiplopterol (VI), 2-methyltetrahymanol (VIII), bacteriohopanetetrol (IX), bacteriohopaneaminotriol (X) and bacteriohopanepolyols [BHP-492 (XIII), BHP-550 (XIV), BHP-508 (XII)] are the major hopanoids of the genus Rhodoplanes. Tetrahymanol (VII) content is high (38–60 %) among all the members, except for Rhodoplanes elegans. Hopanoid fingerprints allowed differentiation of species of the genus Rhodoplanes. Statistical analyses also indicate hopanoids as good chemotaxonomic markers to distinguish species of the genus Rhodoplanes.


Rhodoplanes spp. Hopanoids Biomarker Chemotaxonomy 



This work was funded by Council of Scientific and Industrial Research (CSIR). TL is supported by research fellowship from the University Grants Commission (UGC). SA is supported by research fellowship from the CSIR-SRF. Infrastructural facility support provided by DST as FIST is greatly acknowledged.

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

203_2015_1112_MOESM1_ESM.pdf (77 kb)
Supplementary material 1 (PDF 77 kb)


  1. Blumenberg M, Kruger M, Nauhaus K, Talbot HM, Oppermann BI, Seifert R, Pape T, Michaelis W (2006) Biosynthesis of hopanoids by sulfate-reducing bacteria (genus Desulfovibrio). Environ Microbiol 8:1220–1227PubMedCrossRefGoogle Scholar
  2. Blumenberg M, Oppermann BI, Guyoneaud R, Michaelis W (2009) Hopanoid production by Desulfovibrio bastinii isolated from oilfield formation water. FEMS Microbiol Lett 293:73–78PubMedCrossRefGoogle Scholar
  3. Blumenberg M, Mollenhauer G, Zabel M, Reimer A, Thiel V (2010) Decoupling of bio- and geohopanoids in sediments of the Benguela Upwelling System (BUS). Org Geochem 41:1119–1129CrossRefGoogle Scholar
  4. Garcia Costas AM, Tsukatani Y, Rijpstra WI, Schouten S, Welander PV, Summons RE, Bryant DA (2012) Identification of the bacteriochlorophylls, carotenoids, quinones, lipids, and hopanoids of “Candidatus Chloracidobacterium thermophilum”. J Bacteriol 194:1158–1168PubMedCentralPubMedCrossRefGoogle Scholar
  5. Hartner T, Straub KL, Kannenberg E (2005) Occurrence of hopanoid lipids in anaerobic Geobacter species. FEMS Microbiol Lett 243:59–64PubMedCrossRefGoogle Scholar
  6. Hermans MA, Neuss B, Sahm H (1991) Content and composition of hopanoids in Zymomonas mobilis under various growth conditions. J Bacteriol 173:5592–5595PubMedCentralPubMedGoogle Scholar
  7. Hiraishi A, Ueda Y (1994) Rhodoplanes gen. nov., a new genus of phototrophic bacteria including Rhodopseudomonas rosea as Rhodoplanes roseus comb. nov. and Rhodoplanes elegans sp. nov. Int J Syst Bacteriol 44:665–673CrossRefGoogle Scholar
  8. Lakshmi KVNS, Sasikala C, Ramana C (2009) Rhodoplanes pokkaliisoli sp. nov., a phototrophic alphaproteobacterium isolated from a waterlogged brackish paddy soil. Int J Syst Evol Microbiol 59:2153–2157PubMedCrossRefGoogle Scholar
  9. Neunlist S, Rohmer M (1985) A novel hopanoid, 30-(5′-adenosyl)hopane, from the purple non-sulphur bacterium Rhodopseudomonas acidophila, with possible DNA interactions. Biochem J 228:769–771PubMedCentralPubMedGoogle Scholar
  10. Neunlist S, Holst O, Rohmer M (1985) Prokaryotic triterpenoids. The hopanoids of the purple non-sulphur bacterium Rhodomicrobium vannielii: an aminotriol and its aminoacyl derivatives, N-tryptophanyl and N-ornithinyl aminotriol. Eur J Biochem 147:561–568PubMedCrossRefGoogle Scholar
  11. Neunlist S, Bisseret P, Rohmer M (1988) The hopanoids of the purple non-sulfur bacteria Rhodopseudomonas palustris and Rhodopseudomonas acidophila and the absolute configuration of bacteriohopanetetrol. Eur J Biochem 171:245–252PubMedCrossRefGoogle Scholar
  12. Ourisson G, Albrech P (1992) Hopanoids. 1. Geohopanoids: the most abundant natural products on earth? Acc Chem Res 25:398–402CrossRefGoogle Scholar
  13. Ourisson G, Rohmer M, Poralla K (1987) Prokaryotic hopanoids and other polyterpenoid sterol surrogates. Annu Rev Microbiol 41:301–333PubMedCrossRefGoogle Scholar
  14. Ramana CV, Srinivas A, Subhash Y, Tushar L, Mukharjee T, Usha KP, Sasikala C (2012a) Salinicoccus halitifaciens sp. nov., a novel bacterium participating in halite formation. Antonie Van Leeuwenhoek 103:885–898CrossRefGoogle Scholar
  15. Ramana VV, Shalem RP, Tushar L, Sasikala C, Ramana CV (2012b) Rhodomicrobium udaipurense sp. nov., a psychrotolerant phototrophic alphaproteobacterium isolated from a fresh water stream. Int J Syst Evol Microbiol 63:2684–2689CrossRefGoogle Scholar
  16. Rohmer M, Bouvier-Navez P, Ourisson G (1984) Distribution of hopanoid triterpenes in prokaryotes. J Gen Microbiol 130:131–150Google Scholar
  17. Sessions AL, Zhang L, Welander PV, Doughty D, Summons RE, Newman DK (2013) Identification and quantification of polyfunctionalized hopanoids by high temperature gas chromatography-mass spectrometry. Org Geochem 56:120–130PubMedCentralPubMedCrossRefGoogle Scholar
  18. Srinivas A, Sasikala C, Ramana ChV (2014) Rhodoplanes oryzae sp. nov., a phototrophic alphaproteobacterium isolated from the rhizosphere soil of paddy. Int J Syst Evol Microbiol 64:2198–2203PubMedCrossRefGoogle Scholar
  19. Subhash Y, Tushar L, Sasikala C, Ramana CV (2012) Falsirhodobacter halotolerans gen. nov., sp. nov., isolated from a dry soil of a solar saltern. Int J Syst Evol Microbiol 63:2132–2137PubMedCrossRefGoogle Scholar
  20. Subhash Y, Tushar L, Sasikala C, Ramana CV (2013a) Erythrobacter odishensis sp. nov. and Pontibacter odishensis sp. nov. isolated from a dry soil of a solar saltern. Int J Syst Evol Microbiol 63:4524–4532PubMedCrossRefGoogle Scholar
  21. Subhash Y, Tushar L, Sasikala C, Ramana CV (2013b) Mongoliicoccus alkaliphilus sp. nov. and Litoribacter alkaliphilus sp. nov. isolated from salt pans. Int J Syst Evol Microbiol 63:3457–3462PubMedCrossRefGoogle Scholar
  22. Summons RE, Jahnke LJ, Hope JM, Logan GA (1999) 2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis. Nature 400:554–557PubMedCrossRefGoogle Scholar
  23. Talbot HM, Rohmer M, Farrimond P (2007) Rapid structural elucidation of composite bacterial hopanoids by atmospheric pressure chemical ionisation liquid chromatography/ion trap mass spectrometry. Rapid Commun Mass Spectrom 21:880–892PubMedCrossRefGoogle Scholar
  24. Tank M, Bryant DA (2015) Chloracidobacterium thermophilum gen. nov., sp. nov.: an anoxygenic microaerophilic chlorophotoheterotrophic acidobacterium. Int J Syst Evol Microbiol (In Press) doi: 10.1099/ijs.0.000113
  25. Tushar L, Sasikala C, Ramana ChV (2014) Draft genome sequence of Rhodomicrobium udaipurense JA643T with special reference to hopanoid biosynthesis. DNA Res 21:639–647PubMedCentralPubMedCrossRefGoogle Scholar
  26. Vishnuvardhan SR, Aspana S, Tushar L, Sasikala C, Ramana CV (2013) Spirochaeta sphaeroplastigenens sp. nov., a novel halo-alkaliphilic, obligately anaerobic spirochaete isolated from soda lake Lonar, India. Int J Syst Evol Microbiol 63:2223–2228CrossRefGoogle Scholar
  27. Welander PV, Maureen LC, Sessions AL, Summons RE, Newman DK (2010) Identification of a methylase required for 2-methylhopanoid production and implications for the interpretation of sedimentary hopanes. Proc Natl Acad Sci USA 107:8537–8542PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Tushar Dilipchand Lodha
    • 1
  • Are Srinivas
    • 2
  • Chintalapati Sasikala
    • 2
  • Chintalapati Venkata Ramana
    • 1
  1. 1.Department of Plant Sciences, School of Life SciencesUniversity of HyderabadHyderabadIndia
  2. 2.Bacterial Discovery Laboratory, Centre for Environment, ISTJNT University HyderabadHyderabadIndia

Personalised recommendations