Archives of Microbiology

, Volume 197, Issue 4, pp 503–512 | Cite as

PRRSV receptors and their roles in virus infection

  • Chongxu Shi
  • Yali Liu
  • Yaozhong Ding
  • Yongguang Zhang
  • Jie ZhangEmail author


Porcine reproductive and respiratory syndrome virus (PRRSV) has a restricted cell tropism and prefers to invade well-differentiated cells of the monocyte/macrophage lineage, such as pulmonary alveolar macrophages and African green monkey kidney cell line MA-104 and its derivatives, such as Marc-145, Vero and CL-2621. PRRSV infection of the host cells actually is a receptor-mediated endocytosis and replication process. The presence and absence of the cellular receptors decide whether the cell lines are permissive or non-permissive to PRRSV infection. Several PRRSV non-permissive cell lines, such as BHK-21, PK-15 and CHO-K1, have been shown to become sensitive to the virus infection upon expression of the recombinant receptor proteins. Up to now, heparin sulfate, sialoadhesin, CD163, CD151 and vimentin have been identified as the important PRRSV receptors via their involvement in virus attachment, internalization or uncoating. Each receptor is characterized by the distribution in different cells, the function in virus different infection stages and the interaction model with the viral proteins or genes. Joint forces of the receptors recently attract attentions due to the specific function. PRRSV receptors have become the targets for designing the new anti-viral reagents or the recombinant cell lines used for isolating the viruses or developing more effective vaccines due to their more conserved sequences compared with the genetic variation of the virus. In this paper, the role of PRRSV receptors and the molecular mechanism of the interaction between the virus and the receptors are reviewed.


PRRSV Receptors Heparin sulfate Sialoadhesin CD163 CD151 Vimentin 



Porcine reproductive and respiratory syndrome


PRRS virus


Open reading frame


Porcine alveolar macrophage


Heparin sulfate




Scavenger receptor cystein-rich


Tetradecanoy phorbol acetate




Monoclonal antibody




Untranslated region


Cytopathic effect


Intermediate filament


Lelystad strain




Major histocompatibility complex





This work was supported in part by grants International Science & Technology Cooperation Program of China (2012DFG31890) and National Natural Science foundation of China (No. 31072143).

Conflict of interest

The authors declare no conflicts of interest.


  1. Cain H, Kraus B, Krauspe R, Osborn M, Weber K (1983) Vimentin filaments in peritoneal macrophages at various stages of differentiation and with altered function. Virchows Arch B Cell Pathol Incl Mol Pathol 42:65–81PubMedGoogle Scholar
  2. Calvert JG, Slade DE, Shields SL, Jolie R, Mannan RM, Ankenbauer RG, Welch SK (2007) CD163 expression confers susceptibility to porcine reproductive and respiratory syndrome viruses. J Virol 81:7371–7379. doi: 10.1128/jvi.00513-07 CrossRefPubMedCentralPubMedGoogle Scholar
  3. Chen Y, Guo R, He S, Zhang X, Xia X, Sun H (2014) Additive inhibition of porcine reproductive and respiratory syndrome virus infection with the soluble sialoadhesin and CD163 receptors. Virus Res 179:85–92. doi: 10.1016/j.virusres.2013.11.008 CrossRefPubMedGoogle Scholar
  4. Christianson HC, Belting M (2014) Heparan sulfate proteoglycan as a cell-surface endocytosis receptor. Matrix Biol 35:51–55. doi: 10.1016/j.matbio.2013.10.004 CrossRefPubMedGoogle Scholar
  5. Das PB, Dinh PX, Ansari IH, de Lima M, Osorio FA, Pattnaik AK (2010) The minor envelope glycoproteins GP2a and GP4 of porcine reproductive and respiratory syndrome virus interact with the receptor CD163. J Virol 84:1731–1740. doi: 10.1128/jvi.01774-09 CrossRefPubMedCentralPubMedGoogle Scholar
  6. Das PB, Vu HL, Dinh PX, Cooney JL, Kwon B, Osorio FA, Pattnaik AK (2011) Glycosylation of minor envelope glycoproteins of porcine reproductive and respiratory syndrome virus in infectious virus recovery, receptor interaction, and immune response. Virology 410:385–394. doi: 10.1016/j.virol.2010.12.002 CrossRefPubMedGoogle Scholar
  7. Delputte PL, Vanderheijden N, Nauwynck HJ, Pensaert MB (2002) Involvement of the matrix protein in attachment of porcine reproductive and respiratory syndrome virus to a heparinlike receptor on porcine alveolar macrophages. J Virol 76:4312–4320CrossRefPubMedCentralPubMedGoogle Scholar
  8. Delputte PL, Costers S, Nauwynck HJ (2005) Analysis of porcine reproductive and respiratory syndrome virus attachment and internalization: distinctive roles for heparan sulphate and sialoadhesin. J Gen Virol 86:1441–1445. doi: 10.1099/vir.0.80675-0 CrossRefPubMedGoogle Scholar
  9. Delputte PL, Van Gorp H, Favoreel HW, Hoebeke I, Delrue I, Dewerchin H, Verdonck F, Verhasselt B, Cox E, Nauwynck HJ (2011) Porcine sialoadhesin (CD169/Siglec-1) is an endocytic receptor that allows targeted delivery of toxins and antigens to macrophages. PLoS One 6:e16827. doi: 10.1371/journal.pone.0016827 CrossRefPubMedCentralPubMedGoogle Scholar
  10. Delrue I, Van Gorp H, Van Doorsselaere J, Delputte PL, Nauwynck HJ (2010) Susceptible cell lines for the production of porcine reproductive and respiratory syndrome virus by stable transfection of sialoadhesin and CD163. BMC Biotechnol 10:48. doi: 10.1186/1472-6750-10-48 CrossRefPubMedCentralPubMedGoogle Scholar
  11. Ding Z, Li ZJ, Zhang XD, Li YG, Liu CJ, Zhang YP, Li Y (2012) Proteomic alteration of Marc-145 cells and PAMs after infection by porcine reproductive and respiratory syndrome virus. Vet Immunol Immunopathol 145:206–213. doi: 10.1016/j.vetimm.2011.11.005 CrossRefPubMedGoogle Scholar
  12. Dokland T (2010) The structural biology of PRRSV. Virus Res 154:86–97. doi: 10.1016/j.virusres.2010.07.029 CrossRefPubMedGoogle Scholar
  13. Du Y, Pattnaik AK, Song C, Yoo D, Li G (2012) Glycosyl-phosphatidylinositol (GPI)-anchored membrane association of the porcine reproductive and respiratory syndrome virus GP4 glycoprotein and its co-localization with CD163 in lipid rafts. Virology 424:18–32. doi: 10.1016/j.virol.2011.12.009 CrossRefPubMedGoogle Scholar
  14. Durocher JR, Payne RC, Conrad ME (1975) Role of sialic acid in erythrocyte survival. Blood 45:11–20PubMedGoogle Scholar
  15. Fitter S, Sincock PM, Jolliffe CN, Ashman LK (1999) Transmembrane 4 superfamily protein CD151 (PETA-3) associates with beta 1 and alpha IIb beta 3 integrins in haemopoietic cell lines and modulates cell-cell adhesion. Biochem J 338(Pt 1):61–70CrossRefPubMedCentralPubMedGoogle Scholar
  16. Frydas IS, Verbeeck M, Cao J, Nauwynck HJ (2013) Replication characteristics of porcine reproductive and respiratory syndrome virus (PRRSV) European subtype 1 (Lelystad) and subtype 3 (Lena) strains in nasal mucosa and cells of the monocytic lineage: indications for the use of new receptors of PRRSV (Lena). Vet Res 44:73. doi: 10.1186/1297-9716-44-73 CrossRefPubMedCentralPubMedGoogle Scholar
  17. Gao L, Guo XK, Wang L, Zhang Q, Li N, Chen XX, Wang Y, Feng WH (2013) MicroRNA 181 suppresses porcine reproductive and respiratory syndrome virus (PRRSV) infection by targeting PRRSV receptor CD163. J Virol 87:8808–8812. doi: 10.1128/jvi.00718-13 CrossRefPubMedCentralPubMedGoogle Scholar
  18. Huang Y, Guo R, Zhang Y, Zhang X, Xia X, Sun H (2013) Establishment of a porcine CD151 transgenic PK-15 cell line susceptible to porcine reproductive and respiratory syndrome virus. Wei Sheng Wu Xue Bao 53:507–514PubMedGoogle Scholar
  19. Jiang Y, Khan FA, Pandupuspitasari NS, Kadariya I, Cheng Z, Ren Y, Chen X, Zhou A, Yang L, Kong D, Zhang S (2013) Analysis of the binding sites of porcine sialoadhesin receptor with PRRSV. Int J Mol Sci 14:23955–23979. doi: 10.3390/ijms141223955 CrossRefPubMedCentralPubMedGoogle Scholar
  20. Johnson CR, Griggs TF, Gnanandarajah J, Murtaugh MP (2011) Novel structural protein in porcine reproductive and respiratory syndrome virus encoded by an alternative ORF5 present in all arteriviruses. J Gen Virol 92:1107–1116. doi: 10.1099/vir.0.030213-0 CrossRefPubMedCentralPubMedGoogle Scholar
  21. Jusa ER, Inaba Y, Kouno M, Hirose O (1997) Effect of heparin on infection of cells by porcine reproductive and respiratory syndrome virus. Am J Vet Res 58:488–491PubMedGoogle Scholar
  22. Karniychuk UU, Geldhof M, Vanhee M, Van Doorsselaere J, Saveleva TA, Nauwynck HJ (2010) Pathogenesis and antigenic characterization of a new East European subtype 3 porcine reproductive and respiratory syndrome virus isolate. BMC Vet Res 6:30. doi: 10.1186/1746-6148-6-30 CrossRefPubMedCentralPubMedGoogle Scholar
  23. Kim HS, Kwang J, Yoon IJ, Joo HS, Frey ML (1993) Enhanced replication of porcine reproductive and respiratory syndrome (PRRS) virus in a homogeneous subpopulation of MA-104 cell line. Arch Virol 133:477–483CrossRefPubMedGoogle Scholar
  24. Kim JK, Fahad AM, Shanmukhappa K, Kapil S (2006) Defining the cellular target(s) of porcine reproductive and respiratory syndrome virus blocking monoclonal antibody 7G10. J Virol 80:689–696. doi: 10.1128/jvi.80.2.689-696.2006 CrossRefPubMedCentralPubMedGoogle Scholar
  25. Kim S, Lee S, Shin J, Kim Y, Evnouchidou I, Kim D, Kim YK, Kim YE, Ahn JH, Riddell SR, Stratikos E, Kim VN, Ahn K (2011) Human cytomegalovirus microRNA miR-US4-1 inhibits CD8(+) T cell responses by targeting the aminopeptidase ERAP1. Nat Immunol 12:984–991. doi: 10.1038/ni.2097 CrossRefPubMedCentralPubMedGoogle Scholar
  26. Kreuger J, Kjellen L (2012) Heparan sulfate biosynthesis: regulation and variability. J Histochem Cytochem 60:898–907. doi: 10.1369/0022155412464972 CrossRefPubMedCentralPubMedGoogle Scholar
  27. Lee YJ, Lee C (2010) Deletion of the cytoplasmic domain of CD163 enhances porcine reproductive and respiratory syndrome virus replication. Arch Virol 155:1319–1323. doi: 10.1007/s00705-010-0699-8 CrossRefPubMedGoogle Scholar
  28. Leng CL, Tian ZJ, Zhang WC, Zhang HL, Zhai HY, An TQ, Peng JM, Ye C, Sun L, Wang Q, Sun Y, Li L, Zhao HY, Chang D, Cai XH, Zhang GH, Tong GZ (2014) Characterization of two newly emerged isolates of porcine reproductive and respiratory syndrome virus from Northeast China in 2013. Vet Microbiol 171:41–52. doi: 10.1016/j.vetmic.2014.03.005 CrossRefPubMedGoogle Scholar
  29. Lindahl U, Kjellen L (2013) Pathophysiology of heparan sulphate: many diseases, few drugs. J Intern Med 273:555–571. doi: 10.1111/joim.12061 CrossRefPubMedGoogle Scholar
  30. Martinez VG, Moestrup SK, Holmskov U, Mollenhauer J, Lozano F (2011) The conserved scavenger receptor cysteine-rich superfamily in therapy and diagnosis. Pharmacol Rev 63:967–1000. doi: 10.1124/pr.111.004523 CrossRefPubMedGoogle Scholar
  31. Martinez-Pomares L, Gordon S (2012) CD169 + macrophages at the crossroads of antigen presentation. Trends Immunol 33:66–70. doi: 10.1016/ CrossRefPubMedGoogle Scholar
  32. Meulenberg JJ, Petersen-den Besten A (1996) Identification and characterization of a sixth structural protein of Lelystad virus: the glycoprotein GP2 encoded by ORF2 is incorporated in virus particles. Virology 225:44–51CrossRefPubMedGoogle Scholar
  33. Meulenberg JJ, Petersen-den Besten A, De Kluyver EP, Moormann RJ, Schaaper WM, Wensvoort G (1995) Characterization of proteins encoded by ORFs 2 to 7 of Lelystad virus. Virology 206:155–163CrossRefPubMedGoogle Scholar
  34. Nagamine S, Tamba M, Ishimine H, Araki K, Shiomi K, Okada T, Ohto T, Kunita S, Takahashi S, Wismans RG, van Kuppevelt TH, Masu M, Keino-Masu K (2012) Organ-specific sulfation patterns of heparan sulfate generated by extracellular sulfatases Sulf1 and Sulf2 in mice. J Biol Chem 287:9579–9590. doi: 10.1074/jbc.M111.290262 CrossRefPubMedCentralPubMedGoogle Scholar
  35. Nieuwenhuis N, Duinhof TF, van Nes A (2012) Economic analysis of outbreaks of porcine reproductive and respiratory syndrome virus in nine sow herds. Vet Rec 170:225. doi: 10.1136/vr.100101 CrossRefPubMedGoogle Scholar
  36. O’Neill AS, van den Berg TK, Mullen GE (2013) Sialoadhesin—a macrophage-restricted marker of immunoregulation and inflammation. Immunology 138:198–207. doi: 10.1111/imm.12042 CrossRefPubMedCentralPubMedGoogle Scholar
  37. Patton JB, Rowland RR, Yoo D, Chang KO (2009) Modulation of CD163 receptor expression and replication of porcine reproductive and respiratory syndrome virus in porcine macrophages. Virus Res 140:161–171. doi: 10.1016/j.virusres.2008.12.002 CrossRefPubMedGoogle Scholar
  38. Peterson SB, Liu J (2010) Unraveling the specificity of heparanase utilizing synthetic substrates. J Biol Chem 285:14504–14513. doi: 10.1074/jbc.M110.104166 CrossRefPubMedCentralPubMedGoogle Scholar
  39. Prather RS, Rowland RR, Ewen C, Trible B, Kerrigan M, Bawa B, Teson JM, Mao J, Lee K, Samuel MS, Whitworth KM, Murphy CN, Egen T, Green JA (2013) An intact sialoadhesin (Sn/SIGLEC1/CD169) is not required for attachment/internalization of the porcine reproductive and respiratory syndrome virus. J Virol 87:9538–9546. doi: 10.1128/jvi.00177-13 CrossRefPubMedCentralPubMedGoogle Scholar
  40. Provost C, Jia JJ, Music N, Lévesque C, Lebel MÈ, del Castillo JR, Jacques M, Gagnon CA (2012) Identification of a new cell line permissive to porcine reproductive and respiratory syndrome virus infection and replication which is phenotypically distinct from MARC-145 cell line. Virol J 9:267. doi: 10.1186/1743-422x-9-267 CrossRefPubMedCentralPubMedGoogle Scholar
  41. Robinson SR, Figueiredo MC, Abrahante JE, Murtaugh MP (2013) Immune response to ORF5a protein immunization is not protective against porcine reproductive and respiratory syndrome virus infection. Vet Microbiol 164:281–285. doi: 10.1016/j.vetmic.2013.03.006 CrossRefPubMedCentralPubMedGoogle Scholar
  42. Shanmukhappa K, Kim JK, Kapil S (2007) Role of CD151, A tetraspanin, in porcine reproductive and respiratory syndrome virus infection. Virol J 4:62. doi: 10.1186/1743-422x-4-62 CrossRefPubMedCentralPubMedGoogle Scholar
  43. Simon Davis DA, Parish CR (2013) Heparan sulfate: a ubiquitous glycosaminoglycan with multiple roles in immunity. Front Immunol 4:470. doi: 10.3389/fimmu.2013.00470 CrossRefPubMedCentralPubMedGoogle Scholar
  44. Sincock PM, Fitter S, Parton RG, Berndt MC, Gamble JR, Ashman LK (1999) PETA-3/CD151, a member of the transmembrane 4 superfamily, is localised to the plasma membrane and endocytic system of endothelial cells, associates with multiple integrins and modulates cell function. J Cell Sci 112(Pt 6):833–844PubMedGoogle Scholar
  45. Stadejek T, Stankevicius A, Murtaugh MP, Oleksiewicz MB (2013) Molecular evolution of PRRSV in Europe: current state of play. Vet Microbiol 165:21–28. doi: 10.1016/j.vetmic.2013.02.029 CrossRefPubMedGoogle Scholar
  46. Tian K, Yu X, Zhao T, Feng Y, Cao Z, Wang C, Hu Y, Chen X, Hu D, Tian X, Liu D, Zhang S, Deng X, Ding Y, Yang L, Zhang Y, Xiao H, Qiao M, Wang B, Hou L, Wang X, Yang X, Kang L, Sun M, Jin P, Wang S, Kitamura Y, Yan J, Gao GF (2007) Emergence of fatal PRRSV variants: unparalleled outbreaks of atypical PRRS in China and molecular dissection of the unique hallmark. PLoS One 2:e526. doi: 10.1371/journal.pone.0000526 CrossRefPubMedCentralPubMedGoogle Scholar
  47. Van Breedam W, Verbeeck M, Christiaens I, Van Gorp H, Nauwynck HJ (2013) Porcine, murine and human sialoadhesin (Sn/Siglec-1/CD169): portals for porcine reproductive and respiratory syndrome virus entry into target cells. J Gen Virol 94:1955–1960. doi: 10.1099/vir.0.053082-0 CrossRefPubMedGoogle Scholar
  48. Van Gorp H, Van Breedam W, Van Doorsselaere J, Delputte PL, Nauwynck HJ (2010) Identification of the CD163 protein domains involved in infection of the porcine reproductive and respiratory syndrome virus. J Virol 84:3101–3105. doi: 10.1128/jvi.02093-09 CrossRefPubMedCentralPubMedGoogle Scholar
  49. Vanderheijden N et al (2003) Involvement of sialoadhesin in entry of porcine reproductive and respiratory syndrome virus into porcine alveolar macrophages. J Virol 77:8207–8215CrossRefPubMedCentralPubMedGoogle Scholar
  50. Wang L, Zhang H, Suo X, Zheng S, Feng WH (2011a) Increase of CD163 but not sialoadhesin on cultured peripheral blood monocytes is coordinated with enhanced susceptibility to porcine reproductive and respiratory syndrome virus infection. Vet Immunol Immunopathol 141:209–220. doi: 10.1016/j.vetimm.2011.03.001 CrossRefPubMedGoogle Scholar
  51. Wang WW, Zhang L, Ma XC, Gao JM, Xiao YH, Zhou EM (2011b) The role of vimentin during PRRSV infection of Marc-145 cells. Bing Du Xue Bao 27:456–461PubMedGoogle Scholar
  52. Wang F, Qiu H, Zhang Q, Peng Z, Liu B (2012) Association of two porcine reproductive and respiratory syndrome virus (PRRSV) receptor genes, CD163 and SN with immune traits. Mol Biol Rep 39:3971–3976. doi: 10.1007/s11033-011-1177-4 CrossRefPubMedGoogle Scholar
  53. Weiland E, Wieczorek-Krohmer M, Kohl D, Conzelmann KK, Weiland F (1999) Monoclonal antibodies to the GP5 of porcine reproductive and respiratory syndrome virus are more effective in virus neutralization than monoclonal antibodies to the GP4. Vet Microbiol 66:171–186CrossRefPubMedGoogle Scholar
  54. Welch SK, Calvert JG (2010) A brief review of CD163 and its role in PRRSV infection. Virus Res 154:98–103. doi: 10.1016/j.virusres.2010.07.018 CrossRefPubMedGoogle Scholar
  55. Wu J, Peng X, Zhou A, Qiao M, Wu H, Xiao H, Liu G, Zheng X, Zhang S, Mei S (2014) MiR-506 inhibits PRRSV replication in MARC-145 cells via CD151. Mol Cell Biochem 394:275–281. doi: 10.1007/s11010-014-2103-6 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Chongxu Shi
    • 1
  • Yali Liu
    • 1
  • Yaozhong Ding
    • 1
  • Yongguang Zhang
    • 1
  • Jie Zhang
    • 1
    Email author
  1. 1.State Key Laboratory of Veterinary Etiological Biology, National Food and Mouth Diseases Reference LaboratoryLanzhou Veterinary Research Institute, CAASLanzhouChina

Personalised recommendations