Archives of Microbiology

, Volume 197, Issue 4, pp 513–520 | Cite as

Bacillus dabaoshanensis sp. nov., a Cr(VI)-tolerant bacterium isolated from heavy-metal-contaminated soil

Original Paper

Abstract

A Cr(VI)-tolerant, Gram-staining-positive, rod-shaped, endospore-forming and facultative anaerobic bacterium, designated as GSS04T, was isolated from a heavy-metal-contaminated soil. Strain GSS04T was Cr(VI)-tolerant with a minimum inhibitory concentration of 600 mg l−1 and was capable of reducing Cr(VI) under both aerobic and anaerobic conditions. Growth occurred with presence of 0–3 % (w/v) NaCl (optimum 1 %), at pH 5.5–10.0 (optimum pH 7.0) and 15–50 °C (optimum 30–37 °C). The main respiratory quinone was MK-7 and the major fatty acids were anteiso-C15:0 and iso-C15:0. The DNA G+C content was 41.1 mol%. The predominant polar lipid was diphosphatidylglycerol. Based on 16S rRNA gene sequence similarity, the closest phylogenetic relative was Bacillus shackletonii DSM 18868T (97.6 %). The DNA–DNA hybridization between GSS04T and its closest relatives revealed low relatedness (<70 %). The results of phenotypic, chemotaxonomic and genotypic analyses clearly indicated that strain GSS04T represents a novel species of the genus Bacillus, for which the name Bacillus dabaoshanensis sp. nov. is proposed. The type strain is GSS04T (=CCTCC AB 2013260T = KCTC 33191T).

Keywords

Bacillus dabaoshanensis sp. nov. Cr(VI)-tolerant bacterium Taxonomy Polyphasic characterization 

Supplementary material

203_2015_1082_MOESM1_ESM.pdf (2.6 mb)
Supplementary material 1 (PDF 2655 kb)

References

  1. Adriano DC (2001) Trace elements in terrestrial environments: biogeochemistry, bioavailability, and risks of metals. Springer, New YorkCrossRefGoogle Scholar
  2. Albert RA, Archambault J, Rossello-Mora R, Tindall BJ, Matheny M (2005) Bacillus acidicola sp. nov., a novel mesophilic, acidophilic species isolated from acidic Sphagnum peat bogs in Wisconsin. Int J Syst Evol Microbiol 55:2125–2130CrossRefPubMedGoogle Scholar
  3. Aleem A, Isar J, Malik A (2003) Impact of long-term application of industrial wastewater on the emergence of resistance traits in Azotobacter chroococcum isolated from rhizosphere soil. Bioresour Technol 86:7–13CrossRefPubMedGoogle Scholar
  4. Chen JM, Hao OJ (1998) Microbial chromium (VI) reduction. Crit Rev Environ Sci Technol 28:219–251CrossRefGoogle Scholar
  5. Collins M, Pirouz T, Goodfellow M, Minnikin D (1977) Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 100:221–230CrossRefPubMedGoogle Scholar
  6. Desai C, Jain K, Madamwar D (2008) Hexavalent chromate reductase activity in cytosolic fractions of Pseudomonas sp. G1DM21 isolated from Cr(VI) contaminated industrial landfill. Process Biochem 43:713–721CrossRefGoogle Scholar
  7. Dhal B, Thatoi H, Das N, Pandey BD (2010) Reduction of hexavalent chromium by Bacillus sp. isolated from chromite mine soils and characterization of reduced product. J Chem Technol Biotechnol 85:1471–1479Google Scholar
  8. Dong X, Cai M (2001) Manual of systematic and determinative bacteriology. Science Press, BeijingGoogle Scholar
  9. Ezaki T, Hashimoto Y, Yabuuchi E (1989) Fluorometric deoxyribonucleic acid deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane-filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229CrossRefGoogle Scholar
  10. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  11. Gonzalez C, Ackerley D, Park C, Matin A (2003) A soluble flavoprotein contributes to chromate reduction and tolerance by Pseudomonas putida. Acta Biotechnol 23:233–239CrossRefGoogle Scholar
  12. Han L, Yang G, Zhou X, Yang D, Hu P, Lu Q, Zhou S (2013) Bacillus thermocopriae sp. nov., isolated from a compost. Int J Syst Evol Microbiol 63:3024–3029CrossRefPubMedGoogle Scholar
  13. He M, Li X, Guo L, Susan JM, Christopher R, Wang G (2010) Characterization and genomic analysis of chromate resistant and reducing Bacillus cereus strain SJ1. BMC Microbiol 10:221PubMedCentralPubMedGoogle Scholar
  14. Ishibashi Y, Cervantes C, Silver S (1990) Chromium reduction in Pseudomonas putida. Appl Environ Microbiol 56:2268–2270PubMedCentralPubMedGoogle Scholar
  15. Kämpfer P (1994) Limits and possibilities of total fatty acid analysis for classification and identification of Bacillus species. Syst Appl Microbiol 17:86–98CrossRefGoogle Scholar
  16. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeom YS, Lee JH, Yi H, Won S, Chun H (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721CrossRefPubMedGoogle Scholar
  17. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120CrossRefPubMedGoogle Scholar
  18. Li J, Yang G, Wu M, Zhao Y, Zhou S (2014) Bacillus huizhouensis sp. nov., isolated from a paddy field soil. Anton Leeuw Int JG 106:357–363CrossRefGoogle Scholar
  19. Logan NA, Lebbe L, Verhelst A, Goris J, Forsyth G, Rodríguez-Díaz M, Heyndrickx M, Vos PD (2004) Bacillus shackletonii sp. nov., from volcanic soil on Candlemas Island, South Sandwich archipelago. Int J Syst Evol Microbiol 54:373–376CrossRefPubMedGoogle Scholar
  20. Mesbah M, Premachandran U, Whitman WB (1989) Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167CrossRefGoogle Scholar
  21. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal A, Parlett JH (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241CrossRefGoogle Scholar
  22. Narayani M, Shetty KV (2013) Chromium-resistant bacteria and their environmental condition for hexavalent chromium removal: a review. Crit Rev Environ Sci Technol 43:955–1009CrossRefGoogle Scholar
  23. Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical note 101. MIDI Inc, newarkGoogle Scholar
  24. Sau GB, Chatterjee S, Mukherjee SK (2010) Chromate reduction by cell-free extract of Bacillus firmus KUCr1. Pol J Microbiol 59:185–190CrossRefPubMedGoogle Scholar
  25. Seiler H, Wenning M, Schmidt V, Scherer S (2013) Bacillus gottheilii sp. nov., isolated from a pharmaceutical manufacturing site. Int J Syst Evol Microbiol 63:867–872CrossRefPubMedGoogle Scholar
  26. Slobodkina G, Bonch-Osmolovskaya E, Slobodkin A (2007) Reduction of chromate, selenite, tellurite, and iron (III) by the moderately thermophilic bacterium Bacillus thermoamylovorans SKC1. Microbiol 76:530–534CrossRefGoogle Scholar
  27. Tamaoka J, Katayama-Fujimura Y, Kuraishi H (1983) Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. J Appl Microbiol 54:31–36Google Scholar
  28. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetic analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739CrossRefPubMedCentralPubMedGoogle Scholar
  29. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882CrossRefPubMedCentralPubMedGoogle Scholar
  30. Vaishampayan P, Probst A, Krishnamurthi S, Ghosh S, Osman S, McDowall A, Ruckmani A, Mayilraj S, Venkateswaran K (2010) Bacillus horneckiae sp. nov., isolated from a spacecraft-assembly clean room. Int J Syst Evol Microbiol 60:1031–1037CrossRefPubMedGoogle Scholar
  31. Vaz-Moreira I, Figueira V, Lopes AR, Lobo-da-Cunha A, Spröer C, Schumann P, Nunes OC, Manaia CM (2012) Bacillus purgationiresistans sp. nov., isolated from a drinking-water treatment plant. Int J Syst Evol Microbiol 62:71–77CrossRefPubMedGoogle Scholar
  32. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703PubMedCentralPubMedGoogle Scholar
  33. Zhang Jianli, Wang Jiewei, Fang Caiyuan, Song Fei, Xin Yuhua, Qu Lei, Ding Kai (2010) Bacillus oceanisediminis sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 60:2924–2929CrossRefPubMedGoogle Scholar
  34. Zhang L, Wu GL, Wang Y, Dai J, Fang CX (2011) Bacillus deserti sp. nov., a novel bacterium isolated from the desert of Xinjiang China. Anton Leeuw Int JG 99:221–229CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.College of Food Science and TechnologyShanghai Ocean UniversityShanghaiChina
  2. 2.Guangdong Institute of Eco-Environmental and Soil SciencesGuangzhouChina
  3. 3.Chinese Research Academy of Environmental SciencesBeijingChina

Personalised recommendations