Advertisement

Archives of Microbiology

, Volume 197, Issue 3, pp 431–438 | Cite as

Effect of starvation on survival and virulence expression of Aeromonas hydrophila from different sources

  • Anna Casabianca
  • Chiara Orlandi
  • Federica Barbieri
  • Luigia Sabatini
  • Andrea Di Cesare
  • Davide Sisti
  • Sonia Pasquaroli
  • Mauro Magnani
  • Barbara CitterioEmail author
Original Paper

Abstract

Aeromonas hydrophila is an aquatic bacterium responsible for several human illnesses. The aim of this work was to investigate the survival ability and virulence expression of two strains from different sources (fish, strain 87 and surface water, strain LS) maintained in a seawater microcosm. The strains were analyzed for the total and viable bacterial counts, adhesion ability to Hep-2 cells and aerA gene expression by qPCR throughout the experiment (35 days). Both strains reached a putative VBNC state and lost adhesive properties but exhibited a different behavior in the expression of aerA. This could be due to the different origin of the two strains; the former adapted to a habitat rich of nutrient and the latter already used to survive in a more hostile environment. Moreover, our results indicate that the quantitative determination of aerA mRNA can be a useful indicator of virulence expression under stress conditions.

Keywords

Aeromonas hydrophila qRT-PCR Virulence Nutritional stress Isolation sources VBNC 

Notes

Conflict of interest

The authors declare no conflicts of interest.

References

  1. Abrami L, Fivaz M, van der Goot FG (2000) Adventures of a pore-forming toxin at the target cell surface. Trends Microbiol 8:168–172CrossRefPubMedGoogle Scholar
  2. Aguilera-Arreola MG, Hernández-Rodríguez C, Zúñiga G, Figueras MJ, Garduno RA, Castro-Escarpulli G (2007) Virulence potential and genetic diversity of Aeromonas caviae, Aeromonas veronii, and Aeromonas hydrophila clinical isolates from Mexico and Spain: a comparative study. Can J Microbiol 53:877–887CrossRefPubMedGoogle Scholar
  3. Aldape K, Ginzinger DG, Godfrey TE (2002) Real-time quantitative polymerase chain reaction: a potential tool for genetic analysis in neuropathology. Brain Pathol 12:54–66CrossRefPubMedGoogle Scholar
  4. Avolio M, La Spisa C, Moscariello F, De Rosa R, Camporese A (2009) Aeromonas hydrophila ecthyma gangrenosum without bacteraemia in a diabetic man: the first case report in Italy. Infez Med 17:184–187PubMedGoogle Scholar
  5. Braun V, Focareta T (1991) Pore-forming bacterial protein hemolysins (cytolysins). Crit Rev Microbiol 18:115–158CrossRefPubMedGoogle Scholar
  6. Carvalho-Castro GA, Lopes CO, Leal CA, Cardoso PG, Leite RC, Figueiredo HC (2010) Detection of type III secretion system genes in Aeromonas hydrophila and their relationship with virulence in Nile tilapia. Vet Microbiol 26:371–376CrossRefGoogle Scholar
  7. Chopra AK, Houston CW, Peterson JW, Jin GF (1993) Cloning, expression and sequence analysis of a cytolytic enterotoxin gene from Aeromonas hydrophila. Can J Microbiol 39:513–523CrossRefPubMedGoogle Scholar
  8. Chopra AK, Xu X, Ribardo D, Gonzalez M, Kuhl K, Peterson JW, Houston CW (2000) The cytotoxic enterotoxin of Aeromonas hydrophila induces proinflammatory cytokine production and activates arachidonic acid metabolism in macrophages. Infect Immun 68:2808–2818CrossRefPubMedCentralPubMedGoogle Scholar
  9. Delamare APL, Costa SOP, Da Silveira MM, Echeverriagary S (2000) Growth of Aeromonas species on increasing concentrations of sodium chloride. Lett Appl Microbiol 30:57–60CrossRefPubMedGoogle Scholar
  10. Dooley JS, Trust TJ (1988) S-layer of high-virulence Aeromonas hydrophila. J Diarrhoeal Dis Res 6:120–123PubMedGoogle Scholar
  11. Grim CJ, Kozlova EV, Sha J, Fitts EC, van Lier CJ, Kirtley ML, Joseph SJ, Read TD et al (2013) Characterization of Aeromonas hydrophila wound pathotypes by comparative genomic and functional analyses of virulence genes. MBio 4:e00064-13CrossRefPubMedCentralPubMedGoogle Scholar
  12. Heim S, Lleo MDL, Bonato B, Guzman CA, Canepari P (2002) The viable but nonculturable state and starvation are different stress responses of Enterococcus faecalis, as determined by proteome analysis. J Bacteriol 184:6739–6745CrossRefPubMedCentralPubMedGoogle Scholar
  13. Hu M, Wang N, Pan ZH, Lu CP, Liu YJ (2012) Identity and virulence properties of Aeromonas isolates from diseased fish, healthy controls and water environment in China. Lett Appl Microbiol 55:224–233CrossRefPubMedGoogle Scholar
  14. Hudson JA, Mott SJ, Penney N (1994) Growth of Listeria monocytogenes and Aeromonas hydrophila and Yersinia enterocolitica on vacuum and saturated carbon dioxide controlled atmosphere-packaged sliced roast beef. J Food Prot 57:204–208Google Scholar
  15. Janda JM, Abbott SL (2010) The genus Aeromonas: taxonomy, pathogenicity, and infection. Clin Microbiol Rev 23:35–73CrossRefPubMedCentralPubMedGoogle Scholar
  16. Janda JM, Kokka RP, Guthertz LS (1994) The susceptibility of S-layer-positive and S-layer-negative Aeromonas strains to complement-mediated lysis. Microbiology 140:2899–2905CrossRefPubMedGoogle Scholar
  17. Khaianchi BK, Fad AA, Bochardt MA, Berg RL, Horneman AJ, Stemper ME, Joseph SW, Moyer NP et al (2010) Distribution of virulence factors and molecular fingerprinting of Aeromonas species isolates from water and clinical samples: suggestive evidence of water-to-human transmission. Appl Environ Microbiol 76:2313–2325CrossRefGoogle Scholar
  18. Kirow SM (1997) Aeromonas and Plesiomonas species. In: Doyle MP, Beauchat LR, Montville TJ (eds) Food microbiology: fundamentals and frontiers. AMS Press, Washington DC, pp 265–267Google Scholar
  19. Li J, Ni XD, Liu YJ, Lu CP (2011) Detection of three virulence genes alt, ahp and aerA in Aeromonas hydrophila and their relationship with actual virulence to zebrafish. J Appl Microbiol 110:823–830CrossRefPubMedGoogle Scholar
  20. Maalej S, Gdoura R, Dukan S, Hammami A, Bouain A (2004) Maintenance of pathogenicity during entry into and resuscitation from viable but nonculturable state in Aeromonas hydrophila exposed to natural seawater at low temperature. J Appl Microbiol 97:557–565CrossRefPubMedGoogle Scholar
  21. Mary P, Sautour M, Chihib NE, Tierny Y (2003) Tolerance and starvation induced cross-protection against different stresses in Aeromonas hydrophila. Int J Food Microbiol 87:121–130CrossRefPubMedGoogle Scholar
  22. McMahon MAS, Blair IS, McDowell DA (1998) Filamentation in Aeromonas hydrophila. Food Microbiol 15:441–448CrossRefGoogle Scholar
  23. Messi P, Guerrieri E, Bondi M (2002) Survival of an Aeromonas hydrophila in an artificial mineral water microcosm. Water Res 36:3410–3415CrossRefPubMedGoogle Scholar
  24. Montecucco C, Papini E, Schiavo G (1994) Bacterial protein toxins penetrate cells via a four-step mechanism. FEBS Lett 346:92–98CrossRefPubMedGoogle Scholar
  25. Oliver JD (2009) Recent findings on the viable but non-culturable state in pathogenic bacteria. FEMS Microbiol Rev 34:415–425PubMedGoogle Scholar
  26. Ottaviani D, Parlani C, Citterio B, Masini L, Leoni F, Canonico C, Sabatini L, Bruscolini F et al (2011) Putative virulence properties of Aeromonas strains isolated from food, environmental and clinical sources in Italy: a comparative study. Int J Food Microbiol 144:538–545CrossRefPubMedGoogle Scholar
  27. Palu AP, Gomes LM, Miguel MA, Balassiano IT, Queiroz ML, Freitas-Almeida AC, de Oliveira SS (2006) Antimicrobial resistance in food and clinical Aeromonas isolates. Food Microbiol 23:504–509CrossRefPubMedGoogle Scholar
  28. Parker JL, Shaw JG (2011) Aeromonas spp. Clinical microbiology and disease. J Infect 62:109–118CrossRefPubMedGoogle Scholar
  29. Parker MW, van der Goot FG, Buckley T (1996) Aerolysin—the ins and outs of a model channel-forming toxin. Mol Microbiol 19:205–212CrossRefPubMedGoogle Scholar
  30. Pemberton JM, Kidd SP, Schmidt R (1997) Secreted enzymes of Aeromonas. FEMS Microbiol Lett 152:1–10CrossRefPubMedGoogle Scholar
  31. Pianetti A, Manti A, Boi P, Citterio B, Sabatini L, Papa S, Rocchi MB, Bruscolini F (2008) Determination of viability of Aeromonas hydrophila in increasing concentrations of sodium chloride at different temperatures by flow cytometry and plate count technique. Int J Food Microbiol 127:252–560CrossRefPubMedGoogle Scholar
  32. Pianetti A, Battistelli M, Barbieri F, Bruscolini F, Falcieri E, Manti A, Sabatini L, Citterio B (2012) Changes in adhesion ability of Aeromonas hydrophila during long exposure to salt stress conditions. J Appl Microbiol 113:974–982CrossRefPubMedGoogle Scholar
  33. Rahman MH, Suzuki S, Kawai K (2001) Formation of viable but non-culturable state (VBNC) of Aeromonas hydrophila and its virulence in goldfish, Carassius auratus. Microbiol Res 156:103–106CrossRefPubMedGoogle Scholar
  34. Singh V, Somvanshi P, Rathore G, Kapoor D, Mishra BN (2009) Gene cloning, expression and homology modelling of hemolysin gene from Aeromonas hydrophila. Protein Express Purif 65:1–7CrossRefGoogle Scholar
  35. Singh V, Chaudhary DK, Mani I, Jain R, Mishra BN (2013) Development of diagnostic and vaccine markers through cloning, expression, and regulation of putative virulence-protein-encoding genes of Aeromonas hydrophila. J Microbiol 51:275–282CrossRefPubMedGoogle Scholar
  36. Vila J, Ruiz J, Gallardo F, Vargas M, Soler L, Figueras MJ, Gascon J (2003) Aeromonas spp. and traveler’s diarrhea: clinical features and antimicrobial resistance. Emerg Infect Dis 9:552–555CrossRefPubMedCentralPubMedGoogle Scholar
  37. Wai SN, Mizunoe Y, Takade A, Yoshida S (2000) A comparison of solid and liquid media for resuscitation of starvation- and low-temperature-induced nonculturable cells of Aeromonas hydrophila. Arch Microbiol 173:307–310CrossRefPubMedGoogle Scholar
  38. Yu HB, Zhang YL, Lau YL, Yao F, Vilches S, Merino S, Tomas JM, Howard SP et al (2005) Identification and characterization of putative virulence genes and gene clusters in Aeromonas hydrophila PPD134/91. Appl Environ Microbiol 71:4469–4477CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Anna Casabianca
    • 1
  • Chiara Orlandi
    • 1
  • Federica Barbieri
    • 2
  • Luigia Sabatini
    • 2
  • Andrea Di Cesare
    • 3
    • 4
  • Davide Sisti
    • 5
  • Sonia Pasquaroli
    • 3
  • Mauro Magnani
    • 1
  • Barbara Citterio
    • 2
    Email author
  1. 1.Division of Biochemistry and Molecular Biology, Department of Biomolecular SciencesUniversity of Urbino “Carlo Bo”UrbinoItaly
  2. 2.Division of Toxicology, Hygienistic and Environmental Sciences, Department of Biomolecular SciencesUniversity of Urbino “Carlo Bo”UrbinoItaly
  3. 3.Department of Life and Environmental SciencesPolytechnic University of MarcheAnconaItaly
  4. 4.Microbial Ecology GroupCNR – Institute of Ecosystem StudyVerbaniaItaly
  5. 5.Division of Pharmacology and Pharmacognosy, Department of Biomolecular SciencesUniversity of Urbino “Carlo Bo”UrbinoItaly

Personalised recommendations