Archives of Microbiology

, Volume 197, Issue 3, pp 379–388 | Cite as

Role of a putative tungsten-dependent formylmethanofuran dehydrogenase in Methanosarcina acetivorans

  • Nicole Matschiavelli
  • Michael Rother
Original Paper


Methanogenesis, the biological production of methane, is the sole means for energy conservation for methanogenic archaea. Among the few methanogens shown to grow on carbon monoxide (CO) is Methanosarcina acetivorans, which produces, beside methane, acetate and formate in the process. Since CO-dependent methanogenesis proceeds via formation of formylmethanofuran from CO2 and methanofuran, catalyzed by formylmethanofuran dehydrogenase, we were interested whether this activity could participate in the formate formation from CO. The genome of M. acetivorans encodes four putative formylmethanofuran dehydrogenases, two annotated as molybdenum-dependent and the remaining two as tungsten-dependent enzymes. A mutant lacking one of the putative tungsten enzymes grew very slowly on CO and only after a prolonged adaptation period, which suggests an important role for this isoform during growth on CO. Methanol- and CO-dependent growth of the mutant required the presence of molybdenum indicating an indispensable function of this metal in the remaining isoforms. CO-dependent formate formation could not be observed in the mutant indicating involvement of the respective isoform in the process. However, addition of formaldehyde, which spontaneously reacts with tetrahydrosarcinapterin (H4SPT) to methenyl-H4SPT, led to near-wild-type formate production rates, which argues for an alternative route of formate formation in this organism.


Methanosarcina acetivorans Carbon monoxide Formylmethanofuran dehydrogenase Formate 



We thank Berardino Cocchiararo (Frankfurt) for constructing P0835 and Sandro Wolf (Dresden) for help with qRT-PCR analyses. This work was supported by grants from the Deutsche Forschungsgemeinschaft to Michael Rother (RO 2445/6-1) and from the Graduiertenakademie Dresden to Nicole Matschiavelli.

Supplementary material

203_2014_1070_MOESM1_ESM.doc (1.2 mb)
Supplementary material 1 (DOC 1182 kb)


  1. Andreesen JR, Makdessi K (2008) Tungsten, the surprisingly positively acting heavy metal element for prokaryotes. Ann NY Acad Sci 1125:215–229CrossRefPubMedGoogle Scholar
  2. Ausubel FM, Brent R, Kingston RE et al (2003) Current protocols in molecular biology. Wiley, New YorkGoogle Scholar
  3. Bertram PA, Karrasch M, Schmitz RA, Bocher R, Albracht SPJ, Thauer RK (1994a) Formylmethanofuran dehydrogenases from methanogenic archaea—substrate specificity, EPR properties and reversible inactivation by cyanide of the molybdenum or tungsten iron–sulfur proteins. Eur J Biochem 220:477–484CrossRefPubMedGoogle Scholar
  4. Bertram PA, Schmitz RA, Linder D, Thauer RK (1994b) Tungstate can substitute for molybdate in sustaining growth of Methanobacterium thermoautotrophicum—identification and characterization of a tungsten isoenzyme of formylmethanofuran dehydrogenase. Arch Microbiol 161:220–228CrossRefPubMedGoogle Scholar
  5. Boccazzi P, Zhang JK, Metcalf WW (2000) Generation of dominant selectable markers for resistance to pseudomonic acid by cloning and mutagenesis of the ileS gene from the archaeon Methanosarcina barkeri Fusaro. J Bacteriol 182:2611–2618CrossRefPubMedCentralPubMedGoogle Scholar
  6. Bock AK, Schönheit P (1995) Growth of Methanosarcina barkeri (Fusaro) under nonmethanogenic conditions by the fermentation of pyruvate to acetate: ATP synthesis via the mechanism of substrate level phosphorylation. J Bacteriol 177:2002–2007PubMedCentralPubMedGoogle Scholar
  7. Bose A, Pritchett MA, Rother M, Metcalf WW (2006) Differential regulation of the three methanol methyltransferase isozymes in Methanosarcina acetivorans C2A. J Bacteriol 188:7274–7283CrossRefPubMedCentralPubMedGoogle Scholar
  8. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254CrossRefPubMedGoogle Scholar
  9. Daniels L, Fuchs G, Thauer RK, Zeikus JG (1977) Carbon monoxide oxidation by methanogenic bacteria. J Bacteriol 132:118–126PubMedCentralPubMedGoogle Scholar
  10. Escalante-Semerena JC, Wolfe RS (1984) Formaldehyde oxidation and methanogenesis. J Bacteriol 158:721–726PubMedCentralPubMedGoogle Scholar
  11. Escalante-Semerena JC, Rinehart KL Jr, Wolfe RS (1984) Tetrahydromethanopterin, a carbon carrier in methanogenesis. J Biol Chem 259:9447–9455PubMedGoogle Scholar
  12. Ferry JG (2011) Fundamentals of methanogenic pathways that are key to the biomethanation of complex biomass. Curr Opin Biotechnol 22:351–357CrossRefPubMedCentralPubMedGoogle Scholar
  13. Galagan JE, Nusbaum C, Roy A et al (2002) The genome of M. acetivorans reveals extensive metabolic and physiological diversity. Genome Res 12:532–542CrossRefPubMedCentralPubMedGoogle Scholar
  14. Guss AM, Mukhopadhyay B, Zhang JK, Metcalf WW (2005) Genetic analysis of mch mutants in two Methanosarcina species demonstrates multiple roles for the methanopterin-dependent C-1 oxidation/reduction pathway and differences in H2 metabolism between closely related species. Mol Microbiol 55:1671–1680CrossRefPubMedGoogle Scholar
  15. Guss AM, Kulkarni G, Metcalf WW (2009) Differences in hydrogenase gene expression between Methanosarcina acetivorans and Methanosarcina barkeri. J Bacteriol 191:2826–2833CrossRefPubMedCentralPubMedGoogle Scholar
  16. Haldimann A, Wanner BL (2001) Conditional-replication, integration, excision, and retrieval plasmid–host systems for gene structure–function studies of bacteria. J Bacteriol 183:6384–6393CrossRefPubMedCentralPubMedGoogle Scholar
  17. Hille R (1996) The mononuclear molybdenum enzymes. Chem Rev 96:2757–2816CrossRefPubMedGoogle Scholar
  18. Hochheimer A, Schmitz RA, Thauer RK, Hedderich R (1995) The tungsten formylmethanofuran dehydrogenase from Methanobacterium thermoautotrophicum contains sequence motifs characteristic for enzymes containing molybdopterin dinucleotide. Eur J Biochem 234:910–920CrossRefPubMedGoogle Scholar
  19. Hochheimer A, Linder D, Thauer RK, Hedderich R (1996) The molybdenum formylmethanofuran dehydrogenase operon and the tungsten formylmethanofuran dehydrogenase operon from Methanobacterium thermoautotrophicum—structures and transcriptional regulation. Eur J Biochem 242:156–162CrossRefPubMedGoogle Scholar
  20. Karrasch M, Borner G, Enssle M, Thauer RK (1989) Formylmethanofuran dehydrogenase from methanogenic bacteria, a molybdoenzyme. FEBS Lett 253:226–230CrossRefPubMedGoogle Scholar
  21. Karrasch M, Borner G, Enssle M, Thauer RK (1990) The molybdoenzyme formylmethanofuran dehydrogenase from Methanosarcina barkeri contains a pterin cofactor. Eur J Biochem 194:367–372CrossRefPubMedGoogle Scholar
  22. Keltjens JT, Vogels GD (1993) Conversion of methanol and methylamines to methane and carbon dioxide. In: Ferry JG (ed) Methanogenesis. Chapman & Hall, New York, pp 253–303CrossRefGoogle Scholar
  23. Kletzin A, Adams MW (1996) Tungsten in biological systems. FEMS Microbiol Rev 18:5–63CrossRefPubMedGoogle Scholar
  24. Leigh JA, Rinehart KL, Wolfe RS (1984) Structure of Methanofuran, the carbon dioxide reduction factor of Methanobacterium thermoautotrophicum. J Am Chem Soc 106:3636–3640CrossRefGoogle Scholar
  25. Lessner DJ, Li L, Li Q et al (2006) An unconventional pathway for reduction of CO2 to methane in CO-grown Methanosarcina acetivorans revealed by proteomics. Proc Natl Acad Sci USA 103:17921–17926CrossRefPubMedCentralPubMedGoogle Scholar
  26. Maeder DL, Anderson I, Brettin TS et al (2006) The Methanosarcina barkeri genome: comparative analysis with Methanosarcina acetivorans and Methanosarcina mazei reveals extensive rearrangement within methanosarcinal genomes. J Bacteriol 188:7922–7931CrossRefPubMedCentralPubMedGoogle Scholar
  27. Matschiavelli N, Oelgeschläger E, Cocchiararo B, Finke J, Rother M (2012) Function and regulation of isoforms of carbon monoxide dehydrogenase/acetyl-CoA synthase in Methanosarcina acetivorans. J Bacteriol 194:5377–5387CrossRefPubMedCentralPubMedGoogle Scholar
  28. Metcalf WW, Zhang JK, Shi X, Wolfe RS (1996) Molecular, genetic, and biochemical characterization of the serC gene of Methanosarcina barkeri Fusaro. J Bacteriol 178:5797–5802PubMedCentralPubMedGoogle Scholar
  29. Metcalf WW, Zhang JK, Apolinario E, Sowers KR, Wolfe RS (1997) A genetic system for Archaea of the genus Methanosarcina: liposome-mediated transformation and construction of shuttle vectors. Proc Natl Acad Sci USA 94:2626–2631CrossRefPubMedCentralPubMedGoogle Scholar
  30. Moran JJ, House CH, Vrentas JM, Freeman KH (2008) Methyl sulfide production by a novel carbon monoxide metabolism in Methanosarcina acetivorans. Appl Environ Microbiol 74:540–542CrossRefPubMedCentralPubMedGoogle Scholar
  31. Nelson MJ, Ferry JG (1984) Carbon monoxide-dependent methyl coenzyme M methylreductase in acetotrophic Methosarcina spp. J Bacteriol 160:526–532PubMedCentralPubMedGoogle Scholar
  32. O’Brien JM, Wolkin RH, Moench TT, Morgan JB, Zeikus JG (1984) Association of hydrogen metabolism with unitrophic or mixotrophic growth of Methanosarcina barkeri on carbon monoxide. J Bacteriol 158:373–375PubMedCentralPubMedGoogle Scholar
  33. Oelgeschläger E, Rother M (2009) In vivo role of three fused corrinoid/methyl transfer proteins in Methanosarcina acetivorans. Mol Microbiol 72:1260–1272CrossRefPubMedGoogle Scholar
  34. Pomper BK, Vorholt JA (2001) Characterization of the formyltransferase from Methylobacterium extorquens AM1. Eur J Biochem 269:4769–4775CrossRefGoogle Scholar
  35. Pomper BK, Saurel O, Milon A, Vorholt JA (2002) Generation of formate by the formyltransferase/hydrolase complex (Fhc) from Methylobacterium extorquens AM1. FEBS Lett 523:133–137CrossRefPubMedGoogle Scholar
  36. Pritchett MA, Zhang JK, Metcalf WW (2004) Development of a markerless genetic exchange method for Methanosarcina acetivorans C2A and its use in construction of new genetic tools for methanogenic archaea. Appl Environ Microbiol 70:1425–1433CrossRefPubMedCentralPubMedGoogle Scholar
  37. Richardson JP (1993) Transcription termination. Crit Rev Biochem Mol Biol 28:1–30CrossRefPubMedGoogle Scholar
  38. Rohlin L, Gunsalus RP (2010) Carbon-dependent control of electron transfer and central carbon pathway genes for methane biosynthesis in the archaean, Methanosarcina acetivorans strain C2A. BMC Microbiol 10:62CrossRefPubMedCentralPubMedGoogle Scholar
  39. Rother M (2010) Methanogenesis. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp 483–499Google Scholar
  40. Rother M, Metcalf WW (2004) Anaerobic growth of Methanosarcina acetivorans C2A on carbon monoxide: an unusual way of life for a methanogenic archaeon. Proc Natl Acad Sci USA 101:16929–16934CrossRefPubMedCentralPubMedGoogle Scholar
  41. Rother M, Metcalf WW (2005) Genetic technologies for Archaea. Curr Opin Microbiol 8:745–751CrossRefPubMedGoogle Scholar
  42. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, PlainviewGoogle Scholar
  43. Schmidt K, Liaanen Jensen S, Schlegel HG (1963) Die Carotinoide der Thiorodaceae. Arch Mikrobiol 46:117–126CrossRefPubMedGoogle Scholar
  44. Schmitz RA, Richter M, Linder D, Thauer RK (1992) A tungsten-containing active formylmethanofuran dehydrogenase in the thermophilic archaeon Methanobacterium wolfei. Eur J Biochem 207:559–565CrossRefPubMedGoogle Scholar
  45. Schmitz RA, Bertram PA, Thauer RK (1994) Tungstate does not support synthesis of active formylmethanofuran dehydrogenase in Methanosarcina barkeri. Arch Microbiol 161:528–530CrossRefGoogle Scholar
  46. Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517CrossRefPubMedGoogle Scholar
  47. Sowers KR, Baron SF, Ferry JG (1984) Methanosarcina acetivorans sp. nov., an acetotrophic methane-producing bacterium isolated from marine sediments. Appl Environ Microbiol 47:971–978PubMedCentralPubMedGoogle Scholar
  48. Thauer RK (1998) Biochemistry of methanogenesis: a tribute to Marjory Stephenson. Microbiology 144:2377–2406CrossRefPubMedGoogle Scholar
  49. Van Beelen P, Labro JFA, Keltjens JT et al (1984) Derivatives of methanopterin, a coenzyme involved in methanogenesis. Eur J Biochem 139:359–366CrossRefPubMedGoogle Scholar
  50. Vorholt JA, Thauer RK (2002) Molybdenum and tungsten enzymes in C1 metabolism. Metal Ions Biol Syst 39:571–619Google Scholar
  51. Vorholt JA, Vaupel M, Thauer RK (1996) A polyferredoxin with eight [4Fe-4S] clusters as a subunit of molybdenum formylmethanofuran dehydrogenase from Methanosarcina barkeri. Eur J Biochem 236:309–317CrossRefPubMedGoogle Scholar
  52. Whitman WB, Bowen TL, Boone DR (2006) The methanogenic bacteria. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes—a handbook on the biology of bacteria, 3rd edn. Springer, New York, pp 165–207Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Institut für MikrobiologieTechnische Universität DresdenDresdenGermany

Personalised recommendations