Archives of Microbiology

, Volume 197, Issue 1, pp 105–112 | Cite as

Heterogeneity of Bordetella bronchiseptica adenylate cyclase (cyaA) RTX domain

Original Paper
  • 253 Downloads

Abstract

Bordetella bronchiseptica is a widespread pathogen, with a broad host range, occasionally including humans. Diverse virulence factors (adhesins, toxins) allow its adaptation to its host, but this property of the adenylate cyclase (cyaA) toxin is not well understood. In this study, we analyzed the repeats-in-toxin domain of B. bronchiseptica cyaA with PCR, followed by restriction fragment length analysis. Of ninety-two B. bronchiseptica strains collected from different hosts and geographic regions, 72 (78.3 %) carried cyaA and four RFLP types (A–D) were established using NarI and SalI. However, in 20 strains, cyaA was replaced with a peptide transport protein operon. A phylogenetic tree based on partial nucleotide sequences of cyaA revealed that group 2 contains strains of specifically human origin, whereas subgroup 1a contains all but one of the strains from pigs. The human strains showed many PCR–RFLP and sequence variants, confirming the clonal population structure of B. bronchiseptica.

Keywords

B. bronchiseptica Adenylate cyclase (cyaA) PCR–RFLP Phylogenetic analysis Zoonosis 

Notes

Acknowledgments

This work was supported by the Hungarian Scientific Research Fund (OTKA, K83332). We thank Prof. Alistair Lax (Microbiology Department of King’s College, London, UK) and Karen B. Register (National Animal Disease Center, USDA, Ames, IA, USA) for providing strains.

Conflict of interest

The authors have no conflicts of interest to declare.

References

  1. Akerley BJ, Monack DM, Falkow S, Miller JF (1992) The bvgAS locus negatively controls motility and synthesis of flagella in Bordetella bronchiseptica. J Bacteriol 174:980–990PubMedCentralPubMedGoogle Scholar
  2. Betsou F, Seismiro O, Danchin A, Guiso N (1995) Cloning and sequence of Bordetella bronchiseptica adenylate cyclase-hemolysin-encoding gene: comparison with the Bordetella pertussis gene. Gene 162:165–166PubMedCrossRefGoogle Scholar
  3. Buboltz AM, Nicholson TL, Parette MR, Hester SE, Parkhill J, Harvill ET (2008) Replacement of adenylate cyclase toxin in a lineage of Bordetella bronchiseptica. J Bacteriol 190:5502–5511PubMedCentralPubMedCrossRefGoogle Scholar
  4. Carbonetti NH (2010) Pertussis toxin and adenylate cyclase toxin: key virulence factors of Bordetella pertussis and cell biology tools. Future Microbiol 5:455–469PubMedCentralPubMedCrossRefGoogle Scholar
  5. Chenal-Francisque V, Caro V, Boursaux-Eude C, Guiso N (2009) Genomic analysis of the adenylate cyclase-hemolysin C-terminal region of Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica. Res Microbiol 160:330–336PubMedCrossRefGoogle Scholar
  6. Cotter PA, Miller JF (2001) Bordetella. In: Groisman EA (ed) Principles of bacterial pathogenesis. Academic Press, San Diego, pp 619–674CrossRefGoogle Scholar
  7. El-Azami-El-Idrissi M, Bauche C, Loucka J, Osicka R, Sebo P, Ladant D, Leclerc C (2003) Interaction of Bordetella pertussis adenylate cyclase with CD11b/CD18: role of toxin acylation and identification of the main integrin interaction domain. J Biol Chem 278:38514–38521PubMedCrossRefGoogle Scholar
  8. Glaser P, Ladant D, Sezer O, Pichot F, Ullmann A, Danchin A (1988) The calmodulin-sensitive adenylate cyclase of Bordetella pertussis: cloning and expression in Escherichia coli. Mol Microbiol 2:19–30PubMedCrossRefGoogle Scholar
  9. González GM, Rosales ME, Morales GB, Crespo JAM (2006) Isolation and characterisation of Bordetella bronchiseptica strains from canine origin. Vet Mexico 37:313–325Google Scholar
  10. Goodnow RA (1980) Biology of Bordetella bronchiseptica. Microbiol Rev 44:722–738PubMedCentralPubMedGoogle Scholar
  11. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acid S 41:95–98Google Scholar
  12. Harvill ET, Cotter PA, Yuk MH, Miller JF (1999) Probing the function of Bordetella bronchiseptica adenylate cyclase toxin by manipulating host immunity. Infect Immun 67:1493–1500PubMedCentralPubMedGoogle Scholar
  13. Hewlett EL, Donato GM (2007) Bordetella toxins. In: Locht C (ed) Bordetella molecular microbiology. Horizon Bioscience, Norfolk, UK, pp 97–118Google Scholar
  14. Higgins D, Thompson J, Gibson T, Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680PubMedCentralPubMedCrossRefGoogle Scholar
  15. Hozbor D, Fouque F, Guiso N (1999) Detection of Bordetella bronchiseptica by the polymerase chain reaction. Res Microbiol 150:333–341PubMedCrossRefGoogle Scholar
  16. Khayer B, Rónai Z, Wehmann E, Magyar T (2011) Detection of urease-negative Bordetella bronchiseptica from the field. Acta Vet Hung 59:289–293PubMedCrossRefGoogle Scholar
  17. Khelef N, Zychlinsky A, Guiso N (1993) Bordetella pertussis induces apoptosis in macrophages: role of adenylate cyclase-hemolysin. Infect Immun 61:4064–4071PubMedCentralPubMedGoogle Scholar
  18. Magyar T, Lax AJ (2002) Atrophic rhinitis. In: Brogden KA, Guthmiller JM (eds) Polymicrobial diseases. ASM Press, Washington, pp 169–197CrossRefGoogle Scholar
  19. Mattoo S, Cherry JD (2005) Molecular pathogenesis, epidemiology, and clinical manifestations of respiratory infections due to Bordetella pertussis and other Bordetella subspecies. Clin Microbiol Rev 18:326–382PubMedCentralPubMedCrossRefGoogle Scholar
  20. Mattoo S, Foreman-Wykert AK, Cotter PA, Miller JF (2001) Mechanisms of Bordetella pathogenesis. Front Biosci 6:E168–E186PubMedCrossRefGoogle Scholar
  21. Park J, Zhang Y, Buboltz AM et al (2012) Comparative genomics of the classical Bordetella subspecies: the evolution and exchange of virulence-associated diversity amongst closely related pathogens. BMC Genomics 13:545PubMedCentralPubMedCrossRefGoogle Scholar
  22. Parkhill J, Sebaihia M, Preston A et al (2003) Comparative analysis of the genome sequences of Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica. Nat Genet 35:32–40PubMedCrossRefGoogle Scholar
  23. Serezani CH, Ballinger MN, Aronoff DM, Peters-Golden M (2008) Cyclic AMP: master regulator of innate immune cell function. Am J Respir Cell Mol Biol 39:127–132PubMedCentralPubMedCrossRefGoogle Scholar
  24. Stępniewska K, Markowska-Daniel I (2010) Evaluation of PCR test for detection of dermonecrotoxin of Bordetella bronchiseptica. Bull Vet I Pulawy 54:495–499Google Scholar
  25. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30:2725–2729PubMedCentralPubMedCrossRefGoogle Scholar
  26. Vojtova J, Kamanova J, Sebo P (2006a) Bordetella adenylate cyclase toxin: a swift saboteur of host defense. Curr Opin Microbiol 9:69–75PubMedCrossRefGoogle Scholar
  27. Vojtova J, Kofronova O, Sebo P, Beneda O (2006b) Bordetella adenylate cyclase toxin induces a cascade of morphological changes of sheep erythrocytes and localizes into clusters in erythrocyte membranes. Microsc Res Tech 69:119–129PubMedCrossRefGoogle Scholar
  28. Wernli D, Emonet S, Schrenzel J, Harbarth S (2011) Evaluation of eight cases of confirmed Bordetella bronchiseptica infection and colonization over a 15-year period. Clin Microbiol Infect 17:201–203PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Enikő Wehmann
    • 1
  • Bernadett Khayer
    • 1
  • Tibor Magyar
    • 1
  1. 1.Institute for Veterinary Medical Research, Centre for Agricultural ResearchHungarian Academy of SciencesBudapestHungary

Personalised recommendations