Archives of Microbiology

, Volume 197, Issue 1, pp 1–10 | Cite as

Roles of bacterial membrane vesicles

  • Eric Daniel Avila-Calderón
  • Minerva Georgina Araiza-Villanueva
  • Juan Carlos Cancino-Diaz
  • Edgar Oliver López-Villegas
  • Nammalwar Sriranganathan
  • Stephen M. Boyle
  • Araceli Contreras-Rodríguez
Mini-Review

Abstract

Outer membrane vesicles (OMVs) are released from the outer membrane of Gram-negative bacteria. Moreover, Gram-positive bacteria also produce membrane-derived vesicles. As OMVs transport several bacterial components, especially from the cell envelope, their interaction with the host cell, with other bacteria or as immunogens, have been studied intensely. Several functions have been ascribed to OMVs, especially those related to the transport of virulence factors, antigenic protein composition, and development as acellular vaccines. In this work, we review some of the recent findings about OMVs produced by specific pathogenic bacterial species.

Keywords

Outer membrane vesicles Pathogens Bacteria Gram negative Gram positive 

Notes

Acknowledgments

This work was funded by CONACYT CB-2011-01 No. 169259, SIP-IPN 20131610, SIP-IPN 20144471, and Proyecto de investigacion en apoyo a la consolidacion de profesores del Instituto Politecnico Nacional, con nivel de candidato a investigador Nacional ICYT-DF/IPN. EDAC and MGAV were supported by CONACYT and PIFI-IPN scholarships. ACR, JCCD and EOLV were supported by fellowships from COFAA, SIP-EDI, and SNI-CONACYT. ACR was supported by semestre sabatico agosto-enero 2013-2014 ENCB-IPN.

Conflict of interest

The authors declare that they have no competing interests in relation to this work.

References

  1. Aldick T, Bielaszewska M, Uhlin BE, Humpf HU, Wai SN, Karch H (2009) Vesicular stabilization and activity augmentation of enterohaemorrhagic Escherichia coli haemolysin. Mol Microbiol 71:1496–1508. doi: 10.1111/j.1365-2958.2009.06618.x PubMedCrossRefGoogle Scholar
  2. Asensio CJA, Gaillard ME, Moreno G, Bottero D, Zurita E, Rumbo M, Van der Ley P, Van der Ark A, Hozbor D (2011) Outer membrane vesicles obtained from Bordetella pertussis Tohama expressing the lipid A deacylase PagL as a novel acellular vaccine candidate. Vaccine 29:1649–1656. doi: 10.1016/j.vaccine.2010.12.068 PubMedCrossRefGoogle Scholar
  3. Avila-Calderón ED, Lopez-Merino A, Jain-Gupta N, Peralta H, López-Villegas EO, Sriranganathan N, Boyle SM, Witonsky S, Contreras-Rodríguez A (2012) Characterization of outer membrane vesicles from Brucella melitensis and protection induced in mice. Clin Dev Immunol 2012:352493. doi: 10.1155/2012/352493 PubMedCentralPubMedCrossRefGoogle Scholar
  4. Ayala G, Torres L, Espinosa M, Fierros-Zarate G, Maldonado V, Meléndez-Zajgla J (2006) External membrane vesicles from Helicobacter pylori induce apoptosis in gastric epithelial cells. FEMS Microbiol Lett 260:178–185. doi: 10.1111/j.1574-6968.2006.00305.x PubMedCrossRefGoogle Scholar
  5. Batrakova EV, Kabanov AV (2008) Pluronic block copolymers: evolution of drug delivery concept from inert nanocarriers to biological response modifiers. J Control Release 130:98–106. doi: 10.1016/j.jconrel.2008.04.013 PubMedCentralPubMedCrossRefGoogle Scholar
  6. Bayer ME, Anderson TF (1965) The surface structure of Escherichia coli. Proc Natl Acad Sci USA 54:1592–1599PubMedCentralPubMedCrossRefGoogle Scholar
  7. Beveridge TJ (1999) Structures of gram-negative cell walls and their derived membrane vesicles. J Bacteriol 181:4725–4733PubMedCentralPubMedGoogle Scholar
  8. Bielaszewska M, Rüter C, Kunsmann L, Greune L, Bauwens A, Zhang W, Kuczius T, Kim KS, Mellmann A, Schmidt MA, Karch H (2013) Enterohemorrhagic Escherichia coli hemolysin employs outer membrane vesicles to target mitochondria and cause endothelial and epithelial apoptosis. PLoS Pathog 9:e1003797. doi: 10.1371/journal.ppat.1003797 PubMedCentralPubMedCrossRefGoogle Scholar
  9. Bielig H, Dongre M, Zurek B, Wai SN, Kufer TA (2011) A role for quorum sensing in regulating innate immune responses mediated by Vibrio cholerae outer membrane vesicles (OMVs). Gut Microbes 2:274–279PubMedCrossRefGoogle Scholar
  10. Bishop AL, Tarique AA, Patimalla B, Calderwood SB, Qadri F, Camilli A (2012) Immunization of mice with Vibrio cholerae outer-membrane vesicles protects against hyperinfectious challenge and blocks transmission. J Infect Dis 205:412–421. doi: 10.1093/infdis/jir756 PubMedCentralPubMedCrossRefGoogle Scholar
  11. Bladen HA, Waters JF (1963) Electron microscopic study of some strains of Bacteroides. J Bacteriol 86:1339–1344PubMedCentralPubMedGoogle Scholar
  12. Boigegrain RA, Salhi I, Alvarez-Martinez MT, Machold J, Fedon Y, Arpagaus M, Weise C, Rittig M, Rouot B (2004) Release of periplasmic proteins of Brucella suis upon acidic shock involves the outer membrane protein Omp25. Infect Immun 72:5693–5703. doi: 10.1128/IAI.72.10.5693 PubMedCentralPubMedCrossRefGoogle Scholar
  13. Bomberger JM, MacEachran DP, Coutermarsh BA, Ye S, O’Toole GA, Stanton BA (2009) Long-distance delivery of bacterial virulence factors by Pseudomonas aeruginosa outer membrane vesicles. PLoS Pathog 5:e1000382. doi: 10.1371/journal.ppat.1000382 PubMedCentralPubMedCrossRefGoogle Scholar
  14. Bomberger JM, Ye S, MacEachran DP, Koeppen K, Barnaby RL, O’Toole GA, Stanton BA (2011) A Pseudomonas aeruginosa toxin that hijacks the host ubiquitin proteolytic system. PLoS Pathog 7:e1001325. doi: 10.1371/journal.ppat.1001325 PubMedCentralPubMedCrossRefGoogle Scholar
  15. Boslego J, Garcia J, Cruz C et al (1995) Efficacy, safety, and immunogenicity of a meningococcal group B (15:P1.3) outer membrane protein vaccine in Iquique, Chile. Vaccine 13:821–829PubMedCrossRefGoogle Scholar
  16. Bottero D, Gaillard ME, Errea A, Moreno G, Zurita E, Pianciola L, Rumbo M, Hozbor D (2013) Outer membrane vesicles derived from Bordetella parapertussis as an acellular vaccine against Bordetella parapertussis and Bordetella pertussis infection. Vaccine 31:5262–5268. doi: 10.1016/j.vaccine.2013.08.059 PubMedCrossRefGoogle Scholar
  17. Chatterjee D, Chaudhuri K (2011) Association of cholera toxin with Vibrio cholerae outer membrane vesicles which are internalized by human intestinal epithelial cells. FEBS Lett 585:1357–1362. doi: 10.1016/j.febslet.2011.04.017 PubMedCrossRefGoogle Scholar
  18. Chatterjee SN, Das J (1967) Electron microscopic observations on the excretion of cell-wall material by Vibrio cholerae. J Gen Microbiol 49:1–11PubMedCrossRefGoogle Scholar
  19. Chitcholtan K, Hampton MB, Keenan JI (2008) Outer membrane vesicles enhance the carcinogenic potential of Helicobacter pylori. Carcinogenesis 29:2400–2405. doi: 10.1093/carcin/bgn218 PubMedCrossRefGoogle Scholar
  20. Choi CH, Lee JS, Lee YC, Park TI, Lee JC (2008) Acinetobacter baumannii invades epithelial cells and outer membrane protein A mediates interactions with epithelial cells. BMC Microbiol 8:216–226. doi: 10.1186/1471-2180-8-216 PubMedCentralPubMedCrossRefGoogle Scholar
  21. Choi DS, Kim DK, Choi SJ, Lee J, Choi JP, Rho S, Park SH, Kim YK, Hwang D, Gho YS (2011) Proteomic analysis of outer membrane vesicles derived from Pseudomonas aeruginosa. Proteomics 11:3424–3429. doi: 10.1002/pmic.201000212 PubMedCrossRefGoogle Scholar
  22. Corbel MJ (1997) Brucellosis: an overview. Emerg Infect Dis 3:213–221PubMedCentralPubMedCrossRefGoogle Scholar
  23. Dallo SF, Zhang B, Denno J, Hong S, Tsai A, Haskins W, Ye JY, Weitao T (2012) Association of Acinetobacter baumannii EF-Tu with cell surface, outer membrane vesicles, and fibronectin. Sci World J 2012:128705. doi: 10.1100/2012/128705 CrossRefGoogle Scholar
  24. Donato GM, Goldsmith CS, Paddock CD, Eby JC, Gray MC, Hewlett EL (2012) Delivery of Bordetella pertussis adenylate cyclase toxin to target cells via outer membrane vesicles. FEBS Lett 586:459–465. doi: 10.1016/j.febslet.2012.01.032 PubMedCentralPubMedCrossRefGoogle Scholar
  25. Dorward DW, Garon CF (1990) DNA is packaged within membrane-derived vesicles of gram-negative but not gram-positive bacteria. Appl Environ Microbiol 56:1960–1962PubMedCentralPubMedGoogle Scholar
  26. Dorward DW, Garon CF, Judd RC (1989) Export and intercellular transfer of DNA via membrane blebs of Neisseria gonorrhoeae. J Bacteriol 171:2499–2505PubMedCentralPubMedGoogle Scholar
  27. Eijkelkamp BA, Hassan KA, Paulsen IT, Brown MH (2011) Investigation of the human pathogen Acinetobacter baumannii under iron limiting conditions. BMC Genomics 12:126–139. doi: 10.1186/1471-2164-12-126 PubMedCentralPubMedCrossRefGoogle Scholar
  28. Ellis TN, Leiman SA, Kuehn MJ (2010) Naturally produced outer membrane vesicles from Pseudomonas aeruginosa elicit a potent innate immune response via combined sensing of both lipopolysaccharide and protein components. Infect Immun 78:3822–3831. doi: 10.1128/IAI.00433-10 PubMedCentralPubMedCrossRefGoogle Scholar
  29. Fahie M, Romano FB, Chisholm C, Heuck AP, Zbinden M, Chen M (2013) A non-classical assembly pathway of Escherichia coli pore-forming toxin cytolysin A. J Biol Chem 288:31042–31051. doi: 10.1074/jbc.M113.475350 PubMedCentralPubMedCrossRefGoogle Scholar
  30. Ferrari G, Garaguso I, Adu-Bobie J et al (2006) Outer membrane vesicles from group B Neisseria meningitidis delta gna33 mutant: proteomic and immunological comparison with detergent-derived outer membrane vesicles. Proteomics 6:1856–1866. doi: 10.1002/pmic.200500164 PubMedCrossRefGoogle Scholar
  31. Fiocca R, Necchi V, Sommi P, Ricci V, Telford J, Cover TL, Solcia E (1999) Release of Helicobacter pylori vacuolating cytotoxin by both a specific secretion pathway and budding of outer membrane vesicles. Uptake of released toxin and vesicles by gastric epithelium. J Pathol 188:220–226PubMedCrossRefGoogle Scholar
  32. Fredriksen JH, Rosenqvist E, Wedege E, Bryn K, Bjune G, Frøholm LO, Lindbak AK, Møgster B, Namork E, Rye U et al (1991) Production, characterization and control of MenB-vaccine “Folkehelsa”: an outer membrane vesicle vaccine against group B meningococcal disease. NIPH Ann 14:67–80PubMedGoogle Scholar
  33. Gamazo C, Moriyón I (1987) Release of outer membrane fragments by exponentially growing Brucella melitensis cells. Infect Immun 55:609–615PubMedCentralPubMedGoogle Scholar
  34. Gamazo C, Winter AJ, Moriyón I, Riezu-Boj JI, Blasco JM, Díaz R (1989) Comparative analyses of proteins extracted by hot saline or released spontaneously into outer membrane blebs from field strains of Brucella ovis and Brucella melitensis. Infect Immun 57:1419–1426PubMedCentralPubMedGoogle Scholar
  35. Gankema H, Wensink J, Guinée PAM, Jansen WH, Witholt B (1980) Some characteristics of the outer membrane material released by growing enterotoxigenic Escherichia coli. Infect Immun 29:704–713PubMedCentralPubMedGoogle Scholar
  36. George KM, Chatterjee D, Gunawardana G, Welty D, Hayman J, Lee R, Small PLC (1999) Mycolactone: a polyketide toxin from Mycobacterium ulcerans required for virulence. Science 283:854–857. doi: 10.1126/science.283.5403.854 PubMedCrossRefGoogle Scholar
  37. Grenier D, Bélanger M (1991) Protective effect of Porphyromonas gingivalis outer membrane vesicles against bactericidal activity of human serum. Infect Immun 59:3004–3008PubMedCentralPubMedGoogle Scholar
  38. Gurung M, Moon DC, Choi CW, Lee JH, Bae YC, Kim J, Lee YC, Seol SY, Cho DT, Kim SI, Lee JC (2011) Staphylococcus aureus produces membrane-derived vesicles that induce host cell death. PLoS one 6:e27958. doi: 10.1371/journal.pone.0027958 PubMedCentralPubMedCrossRefGoogle Scholar
  39. Haque H, Russell AD (1974) Effect of chelating agents on the susceptibility of some strains of gram-negative bacteria to some antibacterial agents. Antimicrob Agents Chemother 6:200–206PubMedCentralPubMedCrossRefGoogle Scholar
  40. Hasan N, Pollack A, Cho I (2010) Infectious causes of colorectal cancer. Infect Dis Clin N Am 24:1019–1039. doi: 10.1016/j.idc.2010.07.009 CrossRefGoogle Scholar
  41. Hoekstra D, van der Laan JW, de Leij L, Witholt B (1976) Release of outer membrane fragments from normally growing Escherichia coli. Biochim Biophys Acta Biomembr 455:889–899. doi: 10.1016/0005-2736(76)90058-4 CrossRefGoogle Scholar
  42. Holst J (2007) Strategies for development of universal vaccines against meningococcal serogroup B disease. Hum Vaccin 3:290–294PubMedCrossRefGoogle Scholar
  43. Holst J, Martin D, Arnold R, Campa-Huergo C, Oster P, O’Hallahan J, Rosenqvist E (2009) Properties and clinical performance of vaccines containing outer membrane vesicles from Neisseria meningitidis. Vaccine 27S:B3–B12. doi: 10.1016/j.vaccine.2009.04.071 CrossRefGoogle Scholar
  44. Hong GE, Kim DG, Park EM, Nam BH, Kim YO, Kong IS (2009) Identification of Vibrio anguillarum outer membrane vesicles related to immunostimulation in the Japanese flounder, Paralichthys olivaceus. Biosci Biotechnol Biochem 73:437–439. doi: 10.1271/bbb.80580 PubMedCrossRefGoogle Scholar
  45. Hong SW, Kim MR, Lee EY, Kim JH, Kim YS, Jeon SG, Yang JM, Lee BJ, Pyun BY, Gho YS, Kim YK (2011) Extracellular vesicles derived from Staphylococcus aureus induce atopic dermatitis-like skin inflammation. Allergy 66:351–359. doi: 10.1111/j.1398-9995.2010.02483.x PubMedCentralPubMedCrossRefGoogle Scholar
  46. Hozbor D, Rodríguez ME, Fernández J, Lagares A, Guiso N, Yantorno O (1999) Release of outer membrane vesicles from Bordetella pertussis. Curr Microbiol 38:273–278PubMedCrossRefGoogle Scholar
  47. Ismail S, Hampton MB, Keenan JI (2003) Helicobacter pylori outer membrane vesicles modulate proliferation and interleukin-8 production by gastric epithelial cells. Infect Immun 71:5670–5675. doi: 10.1128/IAI.71.10.5670-5675.2003 PubMedCentralPubMedCrossRefGoogle Scholar
  48. Jain-Gupta N, Contreras-Rodriguez A, Vemulapalli R, Witonsky SG, Boyle SM, Sriranganathan N (2012) Pluronic P85 enhances the efficacy of outer membrane vesicles as a subunit vaccine against Brucella melitensis challenge in mice. FEMS Immunol Med Microbiol 66:436–444. doi: 10.1111/1574-695x.12010 PubMedCrossRefGoogle Scholar
  49. Kadurugamuwa JL, Beveridge TJ (1996) Bacteriolytic effect of membrane vesicles from Pseudomonas aeruginosa on other bacteria including pathogens: conceptually new antibiotics. J Bacteriol 178:2767–2774PubMedCentralPubMedGoogle Scholar
  50. Kadurugamuwa JL, Clarke AJ, Beveridge TJ (1993) Surface action of gentamicin on Pseudomonas aeruginosa. J Bacteriol 175:5798–5805PubMedCentralPubMedGoogle Scholar
  51. Kamaguchi A, Nakayama K, Ichiyama S, Nakamura R, Watanabe T, Ohta M, Baba H, Ohyama T (2003) Effect of Porphyromonas gingivalis vesicles on coaggregation of Staphylococcus aureus to oral microorganisms. Curr Microbiol 47:485–491PubMedCrossRefGoogle Scholar
  52. Kaparakis M, Turnbull L, Carneiro L et al (2010) Bacterial membrane vesicles deliver peptidoglycan to NOD1 in epithelial cells. Cell Microbiol 12:372–385. doi: 10.1111/j.1462-5822.2009.01404.x PubMedCrossRefGoogle Scholar
  53. Khan NA, Shin S, Chung JW, Kim KJ, Elliott S, Wang Y, Kim KS (2003) Outer membrane protein A and cytotoxic necrotizing factor-1 use diverse signaling mechanisms for Escherichia coli K1 invasion of human brain microvascular endothelial cells. Microb Pathog 35:35–42. doi: 10.1016/S0882-4010(03)00090-1 PubMedCrossRefGoogle Scholar
  54. Kim JH, Yoon YJ, Lee J, Choi EJ, Yi N, Park KS, Park J, Lötvall J, Kim YK, Gho YS (2013) Outer membrane vesicles derived from Escherichia coli up-regulate expression of endothelial cell adhesion molecules in vitro and in vivo. PLoS one 8:e59276. doi: 10.1371/journal.pone.0059276 PubMedCentralPubMedCrossRefGoogle Scholar
  55. Kolling GL, Matthews KR (1999) Export of virulence genes and Shiga toxin by membrane vesicles of Escherichia coli O157:H7. Appl Environ Microbiol 65:1843–1848PubMedCentralPubMedGoogle Scholar
  56. Kondo K, Takade A, Amako K (1993) Release of the outer membrane vesicles from Vibrio cholerae and Vibrio parahaemolyticus. Microbiol Immunol 37:149–152PubMedCrossRefGoogle Scholar
  57. Kuehn MJ, Kesty NC (2005) Bacterial outer membrane vesicles and the host-pathogen interaction. Genes Dev 19:2645–2655. doi: 10.1101/gad.1299905 PubMedCrossRefGoogle Scholar
  58. Kwon SO, Gho YS, Lee JC, Kim SI (2009) Proteome analysis of outer membrane vesicles from a clinical Acinetobacter baumannii isolate. FEMS Microbiol Lett 297:150–156. doi: 10.1111/j.1574-6968.2009.01669.x PubMedCrossRefGoogle Scholar
  59. Lee EY, Choi DS, Kim KP, Gho YS (2008) Proteomics in gram-negative bacterial outer membrane vesicles. Mass Spectrom Rev 27:535–555. doi: 10.1002/mas PubMedCrossRefGoogle Scholar
  60. Lee EY, Choi DY, Kim DK, Kim JW, Park JO, Kim S, Kim SH, Desiderio DM, Kim YK, Kim KP, Gho YS (2009) Gram-positive bacteria produce membrane vesicles: proteomics-based characterization of Staphylococcus aureus-derived membrane vesicles. Proteomics 9:5425–5436. doi: 10.1002/pmic.200900338 PubMedCrossRefGoogle Scholar
  61. Lee JH, Choi CW, Lee T, Kim SI, Lee JC, Shin JH (2013) Transcription factor σB plays an important role in the production of extracellular membrane-derived vesicles in Listeria monocytogenes. PLoS one 8:e73196. doi: 10.1371/journal.pone.0073196 PubMedCentralPubMedCrossRefGoogle Scholar
  62. Livermore DM (1995) Beta-lactamases in laboratory and clinical resistance. Clin Microbiol Rev 8:557–584PubMedCentralPubMedGoogle Scholar
  63. Marsollier L, Brodin P, Jackson M et al (2007) Impact of Mycobacterium ulcerans biofilm on transmissibility to ecological niches and Buruli ulcer pathogenesis. PLoS Pathog 3:e62. doi: 10.1371/journal.ppat.0030062 PubMedCentralPubMedCrossRefGoogle Scholar
  64. Mashburn-Warren LM, Whiteley M (2006) Special delivery: vesicle trafficking in prokaryotes. Mol Microbiol 61:839–846. doi: 10.1111/j.1365-2958.2006.05272.x PubMedCrossRefGoogle Scholar
  65. Mayrand D, Grenier D (1989) Biological activities of outer membrane vesicles. Can J Microbiol 35:607–613PubMedCrossRefGoogle Scholar
  66. McConnell MJ, Rumbo C, Bou G, Pachón J (2011) Outer membrane vesicles as an acellular vaccine against Acinetobacter baumannii. Vaccine 29:5705–5710. doi: 10.1016/j.vaccine.2011.06.001 PubMedCrossRefGoogle Scholar
  67. Moon DC, Choi CH, Lee JH, Choi CW, Kim HY, Park JS, Kim SI, Lee JC (2012) Acinetobacter baumannii outer membrane protein A modulates the biogenesis of outer membrane vesicles. J Microbiol 50:155–160. doi: 10.1007/s12275-012-1589-4 PubMedCrossRefGoogle Scholar
  68. Nakao R, Senpuku H, Watanabe H (2006) Porphyromonas gingivalis galE is involved in lipopolysaccharide O-antigen synthesis and biofilm formation. Infect Immun 74:6145–6153. doi: 10.1128/IAI.00261-06 PubMedCentralPubMedCrossRefGoogle Scholar
  69. Nakao R, Hasegawa H, Ochiai K, Takashiba S, Ainai A, Ohnishi M, Watanabe H, Senpuku H (2011) Outer membrane vesicles of Porphyromonas gingivalis elicit a mucosal immune response. PLoS one 6:e26163. doi: 10.1371/journal.pone.0026163 PubMedCentralPubMedCrossRefGoogle Scholar
  70. Olofsson A, Vallström A, Petzold K, Tegtmeyer N, Schleucher J, Carlsson S, Haas R, Backert S, Wai SN, Gröbner G, Arnqvist A (2010) Biochemical and functional characterization of Helicobacter pylori vesicles. Mol Microbiol 77:1539–1555. doi: 10.1111/j.1365-2958.2010.07307.x PubMedCentralPubMedCrossRefGoogle Scholar
  71. Prados-Rosales R, Baena A, Martinez LR et al (2011) Mycobacteria release active membrane vesicles that modulate immune responses in a TLR2-dependent manner in mice. J Clin Invest 121:1471–1483. doi: 10.1172/JCI44261 PubMedCentralPubMedCrossRefGoogle Scholar
  72. Ramos J (2004) Pseudomonas. Kluwer Academic/Plenum Publishers, New YorkCrossRefGoogle Scholar
  73. Rath P, Huang C, Wang T, Wang T, Li H, Prados-Rosales R, Elemento O, Casadevall A, Nathan CF (2013) Genetic regulation of vesiculogenesis and immunomodulation in Mycobacterium tuberculosis. Proc Natl Acad Sci USA 110:E4790–E4797. doi: 10.1073/pnas.1320118110 PubMedCentralPubMedCrossRefGoogle Scholar
  74. Rivera J, Cordero RJB, Nakouzi AS, Frases S, Nicola A, Casadevall A (2010) Bacillus anthracis produces membrane-derived vesicles containing biologically active toxins. PNAS 107:19002–19007. doi: 10.1073/pnas.1008843107 PubMedCentralPubMedCrossRefGoogle Scholar
  75. Roberts R, Moreno G, Bottero D, Gaillard ME, Fingermann M, Graieb A, Rumbo M, Hozbor D (2008) Outer membrane vesicles as acellular vaccine against pertussis. Vaccine 26:4639–4646. doi: 10.1016/j.vaccine.2008.07.004 PubMedCrossRefGoogle Scholar
  76. Rumbo C, Fernández-Moreira E, Merino M, Poza M, Méndez JA, Soares NC, Mosquera A, Chaves F, Bou G (2011) Horizontal transfer of the OXA-24 carbapenemase gene via outer membrane vesicles: a new mechanism of dissemination of carbapenem resistance genes in Acinetobacter baumannii. Antimicrob Agents Chemother 55:3084–3090. doi: 10.1128/AAC.00929-10 PubMedCentralPubMedCrossRefGoogle Scholar
  77. Schild S, Nelson EJ, Camilli A (2008) Immunization with Vibrio cholerae outer membrane vesicles induces protective immunity in mice. Infect Immun 76:4554–4563. doi: 10.1128/IAI.00532-08 PubMedCentralPubMedCrossRefGoogle Scholar
  78. Schooling SR, Beveridge TJ (2006) Membrane vesicles: an overlooked component of the matrices of biofilms. J Bacteriol 188:5945–5957. doi: 10.1128/JB.00257-06 PubMedCentralPubMedCrossRefGoogle Scholar
  79. Serruto D, Matthew JB, Sanjay R, Marzia MG, Rino R (2012) The new multicomponent vaccine against meningococcal serogroup B, 4CMenB: immunological, functional and structural characterization of the antigens. Vaccine 30:B87–B97. doi: 10.1016/j.vaccine.2012.01.033 PubMedCrossRefGoogle Scholar
  80. Shibata S, Visick KL (2012) Sensor kinase RscS induces the production of antigenically distinct outer membrane vesicles that depend on the symbiosis polysaccharide locus in Vibrio fischeri. J Bacteriol 194:185–194. doi: 10.1128/JB.05926-11 PubMedCentralPubMedCrossRefGoogle Scholar
  81. Sierra GV, Campa HC, Varcacel NM, Garcia IL, Izquierdo PL, Sotolongo PF, Casanueva GV, Rico CO, Rodriguez CR, Terry MH (1991) Vaccine against group B Neisseria meningitidis: protection trial and mass vaccination results in Cuba. NIPH Ann 14:195–210PubMedGoogle Scholar
  82. Soult MC, Lonergan NE, Shah B, Kim WK, Britt LD, Sullivan CJ (2013) Outer membrane vesicles from pathogenic bacteria initiate an inflammatory response in human endothelial cells. J Surg Res 184:458–466PubMedCrossRefGoogle Scholar
  83. Srisatjaluk R, Doyle RJ, Justus DE (1999) Outer membrane vesicles of Porphyromonas gingivalis inhibit IFN-γ -mediated MHC class II expression by human vascular endothelial cells. Microb Pathog 27:81–91PubMedCrossRefGoogle Scholar
  84. Su XZ, Chen J, Mizushima T, Kuroda T, Tsuchiya T (2005) AbeM, an H + -coupled Acinetobacter baumannii multidrug efflux pump belonging to the MATE family of transporters. Antimicrob Agents Chemother 49:4362–4364. doi: 10.1128/AAC.49.10.4362-4364.2005 PubMedCentralPubMedCrossRefGoogle Scholar
  85. Thay B, Wai SN, Oscarsson J (2013) Staphylococcus aureus α-toxin-dependent induction of host cell death by membrane-derived vesicles. PLoS one 8:e54661. doi: 10.1371/journal.pone.0054661 PubMedCentralPubMedCrossRefGoogle Scholar
  86. Tyrer PC, Frizelle FA, Keenan JI (2014) Escherichia coli-derived outer membrane vesicles are genotoxic to human enterocyte-like cells. Infect Agent Cancer 9:1–14. doi: 10.1186/1750-9378-9-2 CrossRefGoogle Scholar
  87. van de Waterbeemd B, Streefland M, van der Ley P, Zomer B, van Dijken H et al (2010) Improved OMV vaccine against Neisseria meningitidis using genetically engineered strains and a detergent-free purification process. Vaccine 28:4810–4816PubMedCrossRefGoogle Scholar
  88. van de Waterbeemd B, Streefland M, van Keulen L, van den IJssel J, De Haan A et al (2012) Identification and optimization of critical process parameters for the production of NOMV vaccine against Neisseria meningitidis. Vaccine 30:3683–3690PubMedCrossRefGoogle Scholar
  89. van der Ley P, Steeghs L, Hamstra HJ et al (2001) Modification of lipid A biosynthesis in Neisseria meningitidis lpxL mutants: influence on lipopolysaccharide structure, toxicity, and adjuvant activity. Infect Immun 69:5981–5990. doi: 10.1128/IAI.69.10.5981 PubMedCentralPubMedCrossRefGoogle Scholar
  90. Wai SN, Takade A, Amako K (1995) The release of outer membrane vesicles from strains of enterotoxigenic Escherichia coli. Microbiol Immunol 39:451–456PubMedCrossRefGoogle Scholar
  91. Wai SN, Lindmark B, Söderblom T, Takade A, Westermark M, Oscarsson J, Jass J, Richter-Dahlfors A, Mizunoe Y, Uhlin BE (2003) Vesicle-mediated export and assembly of pore-forming oligomers of the enterobacterial ClyA cytotoxin. Cell 115:25–35PubMedCrossRefGoogle Scholar
  92. Yonezawa H, Osaki T, Kurata S, Fukuda M, Kawakami H, Ochiai K, Hanawa T, Kamiya S (2009) Outer membrane vesicles of Helicobacter pylori TK1402 are involved in biofilm formation. BMC Microbiol 9:197–208. doi: 10.1186/1471-2180-9-197 PubMedCentralPubMedCrossRefGoogle Scholar
  93. Yonezawa H, Osaki T, Woo T, Kurata S, Zaman C, Hojo F, Hanawa T, Kato S, Kamiya S (2011) Analysis of outer membrane vesicle protein involved in biofilm formation of Helicobacter pylori. Anaerobe 17:388–390. doi: 10.1016/j.anaerobe.2011.03.020 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Eric Daniel Avila-Calderón
    • 1
  • Minerva Georgina Araiza-Villanueva
    • 1
  • Juan Carlos Cancino-Diaz
    • 1
  • Edgar Oliver López-Villegas
    • 1
  • Nammalwar Sriranganathan
    • 2
  • Stephen M. Boyle
    • 2
  • Araceli Contreras-Rodríguez
    • 1
  1. 1.Departamento de Microbiología. Escuela Nacional de Ciencias BiológicasInstituto Politécnico NacionalMexicoMexico
  2. 2.Center for Molecular Medicine and Infectious Diseases, Virginia-Maryland Regional College of Veterinary MedicineVirginia TechBlacksburgUSA

Personalised recommendations