Advertisement

Archives of Microbiology

, Volume 196, Issue 10, pp 709–717 | Cite as

Bacterial communities associated with the pitcher fluids of three Nepenthes (Nepenthaceae) pitcher plant species growing in the wild

  • Lee Yiung Chou
  • Charles M. Clarke
  • Gary A. Dykes
Original Paper

Abstract

Nepenthes pitcher plants produce modified jug-shaped leaves to attract, trap and digest insect prey. We used 16S rDNA cloning and sequencing to compare bacterial communities in pitcher fluids of each of three species, namely Nepenthes ampullaria, Nepenthes gracilis and Nepenthes mirabilis, growing in the wild. In contrast to previous greenhouse-based studies, we found that both opened and unopened pitchers harbored bacterial DNA. Pitchers of N. mirabilis had higher bacterial diversity as compared to other Nepenthes species. The composition of the bacterial communities could be different between pitcher types for N. mirabilis (ANOSIM: R = 0.340, p < 0.05). Other Nepenthes species had similar bacterial composition between pitcher types. SIMPER showed that more than 50 % of the bacterial taxa identified from the open pitchers of N. mirabilis were not found in other groups. Our study suggests that bacteria in N. mirabilis are divided into native and nonnative groups.

Keywords

Bacterial communities Nepenthes Pitcher plants 16S rDNA Ecology 

References

  1. Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169PubMedPubMedCentralGoogle Scholar
  2. Bauer U, Willmes C, Federle W (2009) Effect of pitcher age on trapping efficiency and natural prey capture in carnivorous Nepenthes rafflesiana plants. Ann Bot 103:1219–1226PubMedCrossRefPubMedCentralGoogle Scholar
  3. Bauer U, Grafe TU, Federle W (2011) Evidence for alternative trapping strategies in two forms of the pitcher plant, Nepenthes rafflesiana. J Exp Bot 62:3683–3692PubMedCrossRefPubMedCentralGoogle Scholar
  4. Beaver RA (1983) The communities living in Nepenthes pitcher plants: fauna and food webs. In: Frank JH, Lounibos LP (eds) Phytotelmata: plants as hosts for aquatic insect communities. Plexus, Medford, pp 129–159Google Scholar
  5. Beaver RA (1985) Geographical variation in food web structure in Nepenthes pitcher plants. Ecol Entomol 10:241–248CrossRefGoogle Scholar
  6. Bhore SJ, Komathi V, Kandasamy KI (2013) Diversity of endophytic bacteria in medicinally important Nepenthes species. J Nat Sci Biol Med 4:431–434PubMedCrossRefPubMedCentralGoogle Scholar
  7. Bonhomme V, Pelloux-Prayer H, Jousselin E, Forterre Y, Labat JJ, Gaume L (2011) Slippery or sticky? Functional diversity in the trapping strategy of Nepenthes carnivorous plants. New Phytol 191:545–554PubMedCrossRefGoogle Scholar
  8. Buch F, Rott M, Rottloff S, Paetz C, Hilke I, Raessler M, Mithöfer A (2012) Secreted pitfall-trap fluid of carnivorous Nepenthes plants is unsuitable for microbial growth. Ann Bot 111:375–383PubMedCrossRefPubMedCentralGoogle Scholar
  9. Buckley HL, Miller TE, Ellison AM, Gotelli NJ (2010) Local to continental-scale variation in the richness and composition of an aquatic food web. Glob Ecol Biogeogr 19:711–723Google Scholar
  10. Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Aust J Ecol 18:117–143CrossRefGoogle Scholar
  11. Clarke CM (1997) Nepenthes of Borneo. Natural, Kota KinabaluGoogle Scholar
  12. Clarke CM (2001) Nepenthes of Sumatra and Peninsular Malaysia. Natural, Kota KinabaluGoogle Scholar
  13. Clarke KR, Gorley R (2006) Primer v6: user manual/tutorial. Primer-E, PlymouthGoogle Scholar
  14. Di Giusto B, Grosbois V, Fargeas E, Marshall DJ, Gaume L (2008) Contribution of pitcher fragrance and fluid viscosity to high prey diversity in a Nepenthes carnivorous plant from Borneo. J Biosci 33:121–136PubMedCrossRefGoogle Scholar
  15. Di Giusto B, Rowe N, Gaume L (2009) The waxy surface in Nepenthes pitcher plants: variability, adaptive significance and developmental evolution. In: Gorb SN (ed) Functional surfaces in biology. Springer Science+Business Media, New York, pp 183–203CrossRefGoogle Scholar
  16. Di Giusto B, Bessière JM, Guéroult M, Lim LBL, Marshall DJ, Hossaert-McKey M, Gaume L (2010) Flower-scent mimicry masks a deadly trap in the carnivorous plant Nepenthes rafflesiana. J Ecol 98:845–856CrossRefGoogle Scholar
  17. Gaume L, Forterre Y (2007) A viscoelastic deadly fluid in carnivorous pitcher plants. PLoS One 2:e1185PubMedCrossRefPubMedCentralGoogle Scholar
  18. Gorb SV, Gorb SN (2006) Physicochemical properties of functional surfaces in pitchers of the carnivorous plant Nepenthes alata Blanco (Nepenthaceae). Plant Biol 8:841–848PubMedCrossRefGoogle Scholar
  19. Harrigan W, McCance M (1976) Laboratory methods in food and dairy microbiology. Academic Press, New YorkGoogle Scholar
  20. Hatano N, Hamada T (2008) Proteome analysis of pitcher fluid of the carnivorous plant Nepenthes alata. J Proteome Res 7:809–816PubMedCrossRefGoogle Scholar
  21. Hatano N, Hamada T (2012) Proteomic analysis of secreted protein induced by a component of prey in pitcher fluid of the carnivorous plant Nepenthes alata. J Proteomics 75:4844–4852PubMedCrossRefGoogle Scholar
  22. Hepburn JS (1918) Biochemical studies of the pitcher liquor of Nepenthes. Proc Am Philos Soc 57:112–129Google Scholar
  23. Hepburn JS, St John EQ (1927) A bacteriological study of the pitcher liquor of the Sarraceniaceae. Trans Wagner Free Inst Sci Phila 11:75–83Google Scholar
  24. Higashi S, Nakashima A, Ozaki H, Abe M (1993) Analysis of feeding mechanism in a pitcher of Nepenthes hybrida. J Plant Res 106:47–54CrossRefGoogle Scholar
  25. Huber T, Faulkner G, Hugenholtz P (2004) Bellerophon: a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics 20:2317–2719PubMedCrossRefGoogle Scholar
  26. Kato M, Hotta M, Tamin R, Itino T (1993) Inter- and intra-specific variation in prey assemblages and inhabitant communities in Nepenthes pitchers in Sumatra. Trop Zool 6:11–25CrossRefGoogle Scholar
  27. Lloyd FE (1942) The carnivorous plants. Chronica Botanica Co., WalthamGoogle Scholar
  28. Marchesi JR, Sato T, Weightman AJ, Martin TA, Fry JC, Hiom SJ, Wade WG (1998) Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Appl Environ Microbiol 64:795–799PubMedPubMedCentralGoogle Scholar
  29. Moran JA (1996) Pitcher dimorphism, prey composition and the mechanisms of prey attraction in the pitcher plant Nepenthes rafflesiana in Borneo. J Ecol 84:515–525CrossRefGoogle Scholar
  30. Morohoshi T, Oikawa M, Sato S, Kikuchi N, Kato N, Ikeda T (2011) Isolation and characterization of novel lipases from a metagenomic library of the microbial community in the pitcher fluid of the carnivorous plant Nepenthes hybrida. J Biosci Bioeng 112:315–320PubMedCrossRefGoogle Scholar
  31. Oliver JD (2005) The viable but nonculturable state in bacteria. J Microbiol 43:93–100PubMedGoogle Scholar
  32. Pankratov TA, Belova S, Dedysh S (2005) Evaluation of the phylogenetic diversity of prokaryotic microorganisms in sphagnum peat bogs by means of fluorescence in situ hybridization (FISH). Microbiology 74:722–728CrossRefGoogle Scholar
  33. Peet RK (1974) The measurement of species diversity. Annu Rev Ecol Syst 5:285–307CrossRefGoogle Scholar
  34. Riedel M, Eichner A, Meimberg M, Jetter R (2007) Chemical composition of epicuticular wax crystals on the slippery zone in pitchers of five Nepenthes species and hybrids. Planta 225:1517–1534PubMedCrossRefGoogle Scholar
  35. Scholz I, Bückins M, Dolge L, Erlinghagen T, Weth A, Hischen F, Mayer J, Hoffmann S, Riederer M, Riedel M, Baumgartner W (2010) Slippery surfaces of pitcher plants: Nepenthes wax crystals minimize insect attachment via microscopic surface roughness. J Exp Biol 213:1115–1125PubMedCrossRefGoogle Scholar
  36. Sim JWS, Tan HTW, Turner IM (1992) Adinandra belukar: an anthropogenic heath forest in Singapore. Vegetatio 102:125–137CrossRefGoogle Scholar
  37. Siragusa AJ, Swenson JE, Casamatta DA (2007) Culturable bacteria present in the fluid of the hooded-pitcher plant Sarracenia minor based on 16S rDNA gene sequence data. Microbial Ecol 54:324–331CrossRefGoogle Scholar
  38. Sota T, Mogi M, Kato K (1998) Local and regional-scale food web structure in Nepenthes alata pitchers. Biotropica 30:82–91CrossRefGoogle Scholar
  39. Takeuchi Y, Salcher MM, Ushio M, Shimizu-Inatsugi R, Kobayashi MJ, Diway B, von Mering C, Pernthaler J, Shimizu KK (2011) In situ enzyme activity in the dissolved and particulate fraction of the fluid from four pitcher plant species of the genus Nepenthes. PLoS One 6:e25144PubMedCrossRefPubMedCentralGoogle Scholar
  40. Thornhill AH, Harper IS, Hallam ND (2008) The development of the digestive glands and enzymes in the pitchers of three Nepenthes species: N. alata, N. tobaica, and N. ventricosa (Nepenthaceae). Int J Plant Sci 169:615–624CrossRefGoogle Scholar
  41. Ugland KI, Gray JS, Ellingsen KE (2003) The species-accumulation curve and estimation of species richness. J Anim Ecol 72:888–897CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Lee Yiung Chou
    • 1
  • Charles M. Clarke
    • 1
  • Gary A. Dykes
    • 1
    • 2
  1. 1.School of ScienceMonash UniversityBandar SunwayMalaysia
  2. 2.School of ChemistryMonash UniversityClaytonAustralia

Personalised recommendations