Advertisement

Archives of Microbiology

, Volume 196, Issue 9, pp 645–653 | Cite as

Bacteriocin production and gene sequencing analysis from vaginal Lactobacillus strains

  • Galina Stoyancheva
  • Marta Marzotto
  • Franco Dellaglio
  • Sandra Torriani
Original Paper

Abstract

The human vagina is a complex and dynamic ecosystem containing an abundance of microorganisms. In women of childbearing age, this system is dominated by Lactobacillus spp. In the present work, seventeen newly isolated vaginal strains were identified by 16S rDNA sequencing and were investigated for their antimicrobial properties. Twelve of the isolated Lactobacillus strains showed activity against one or more microorganisms. Six and five of them produced substances that inhibited the growth of two different Klebsiella strains and Staphylococcus aureus, respectively. Two lactobacilli strains were active against an Escherichia coli strain, one isolate was active against an Enterococus faecalis strain and another lactobacilli strain showed antimicrobial activity against a Candida parapsilosis strain. The nature of the active compounds was additionally studied, and the presence of bacteriocin-like substances was proved. The genes related to the bacteriocin production in three of the newly isolated strains were identified and sequenced. The presence of gassericin A operon in the genome of the species Lactobacillus crispatus was described for the first time. The presence of antimicrobial activity contributes to their possible use as potential probiotic strains after further research.

Keywords

Bacteriocin genes Lactobacillus gasseri Gassericin Lactobacillus crispatus Human microbiota 

Notes

Acknowledgments

This work was financially supported by research Grant from Federation of European Microbiological Societies (FEMS).

References

  1. Al Kassaa I, Hamze M, Hober D, Chihib N, Drider D (2014) Identification of vaginal lactobacilli with potential probiotic properties isolated from women in North Lebanon. Microb Ecol. doi: 10.1007/s00248-014-0384-7 PubMedGoogle Scholar
  2. Andreu A (2004) Lactobacillus as a probiotic for preventing urogenital infections. Rev Med Microbiol 15:1–6CrossRefGoogle Scholar
  3. Atassi F, Brassart D, Grob P, Graf F, Servin AL (2006) Vaginal Lactobacillus isolates inhibit uropathogenic Escherichia coli. FEMS Microbiol Lett 257:132–138. doi: 10.1111/j.1574-6968.2006.00163.x PubMedCrossRefGoogle Scholar
  4. Ayeni F, Adeniyi B, Ogunbanwo S, Tabasco R, Paarup T, Peláez C, Requena T (2009) Inhibition of uropathogens by lactic acid bacteria isolated from dairy foods and cow’s intestine in western Nigeria. Arch Microbiol 191:639–648. doi: 10.1007/s00203-009-0492-9 PubMedCrossRefGoogle Scholar
  5. Berger B, Pridmore R, Barretto C, Delmas-Julien F, Schreiber K, Arigoni F, Brussow H (2007) Similarity and differences in the Lactobacillus acidophilus group identified by polyphasic analysis and comparative genomics. J Bacteriol 189:1311–1321. doi: 10.1128/JB.01393-06 PubMedCentralPubMedCrossRefGoogle Scholar
  6. Boris S, Barbe´s C (2000) Role played by lactobacilli in controlling the population of vaginal pathogens. Microbes Infect 2:543–546. doi: 10.1016/S1286-4579(00)00313-0 PubMedCrossRefGoogle Scholar
  7. Bull M, Plummer S, Marchesi J, Mahenthiralingam E (2013) The life history of Lactobacillus acidophilus as a probiotic: a tale of revisionary taxonomy, misidentification and commercial success. FEMS Microbiol Lett 349:77–87. doi: 10.1111/1574-6968.12293 PubMedCrossRefGoogle Scholar
  8. Chapman C, Gibson G, Todd S, Rowland I (2013) Comparative in vitro inhibition of urinary tract pathogens by single-and multi-strain probiotics. Eur J Nutr 52:1669–1677. doi: 10.1007/s00394-013-0501-2 PubMedCrossRefGoogle Scholar
  9. Chen Y, Wang Y, Chow Y, Yanagida F, Liao C, Chiu C (2014) Purification and characterization of plantaricin Y, a novel bacteriocin produced by Lactobacillus plantarum 510. Arch Microbiol 196:193–199. doi: 10.1007/s00203-014-0958-2 PubMedCrossRefGoogle Scholar
  10. Collado M, Hernandez M, Sanz Y (2005) Production of bacteriocin-like inhibitory compounds by human feacal Bifidobacterium strains. J Food Protect 5:900–1111Google Scholar
  11. Corsetti A, Settanni L, Van Sinderen D (2004) Characterization of bacteriocin-like inhibitory substances (BLIS) from sourdough lactic acid bacteria and evaluation of their in vitro and in situ activity. J Appl Microbiol 96:521–534. doi: 10.1111/j.1365-2672.2004.02171.x PubMedCrossRefGoogle Scholar
  12. Cotter P, Hill C, Ross R (2005) Bacteriocins: developing innate immunity for food. Nat Rev Microbiol 3:777–788. doi: 10.1038/nrmicro1273 PubMedCrossRefGoogle Scholar
  13. Cox M, Cookson W, Moffatt M (2013) Sequencing the human microbiome in health and disease. Hum Mol Genet 22:R88–R94. doi: 10.1093/hmg/ddt398 PubMedCrossRefGoogle Scholar
  14. De Gregorio P, Tomás M, Santos V, Nader-Macías M (2012) Beneficial lactobacilli: effects on the vaginal tract in a murine experimental model. Antonie van Leeuwenhoek J Microbiol 102:569–580. doi: 10.1007/s10482-012-9752-9 PubMedCrossRefGoogle Scholar
  15. Drider D, Fimland G, Héchard Y, McMullen L, Prévost H (2006) The continuing story of class IIa bacteriocins. Microbiol Mol Biol Rev 70:564–582. doi: 10.1128/MMBR.00016-05 PubMedCentralPubMedCrossRefGoogle Scholar
  16. Eden P, Schmidt T, Blakemore R, Pace N (1991) Phylogenetic analysis of Aquaspirillum magnetotacticum using polymerase chain reaction- amplified 16S rRNA- specific DNA. Int J Syst Bacteriol 41:324–325. doi: 10.1099/00207713-41-2-324 PubMedCrossRefGoogle Scholar
  17. El Aila N, Tency I, Claeys G et al (2009) Identification and genotyping of bacteria from paired vaginal and rectal samples from pregnant women indicates similarity between vaginal and rectal microflora. BMC Infect Dis 9:167. doi: 10.1186/1471-2334-9-167 PubMedCentralPubMedCrossRefGoogle Scholar
  18. Fredricks D, Fiedler T, Marrazzo J (2005) Molecular identification of bacteria associated with bacterial vaginosis. N Engl J Med 353:1899–1911. doi: 10.1056/NEJMoa043802 PubMedCrossRefGoogle Scholar
  19. Fujinaka H, Takeshita T, Sato H, Yamamoto T, Nakamura J, Hase T, Yamashita Y (2013) Relationship of periodontal clinical parameters with bacterial composition in human dental plaque. Arch Microbiol 195:371–383. doi: 10.1007/s00203-013-0883-9 PubMedCrossRefGoogle Scholar
  20. Gerbaldo GA, Barberis C, Pascual L, Dalcero A, Barberis L (2012) Antifungal activity of two Lactobacillus strains with potential probiotic properties. FEMS Microbiol Lett 332:27–33. doi: 10.1111/j.1574-6968.2012.02570.x PubMedCrossRefGoogle Scholar
  21. Hernández D, Cardell E, Zárate V (2005) Antimicrobial activity of lactic acid bacteria isolated from Tenerife cheese: initial characterization of plantaricin TF711, a bacteriocin-like substance produced by Lactobacillus plantarum TF711. J Appl Microbiol 99:77–84. doi: 10.1111/j.1365-2672.2005.02576.x PubMedCrossRefGoogle Scholar
  22. Kawai Y, Saito T, Suzuki M, Itoh T (1998) Sequence analysis by cloning of the structural gene of gassericin A, a hydrophobic bacteriocin produced by Lactobacillus gasseri LA39. Biosci Biotechnol Biochem 62:887–892. doi: 10.1271/bbb.62.887 PubMedCrossRefGoogle Scholar
  23. Kawai Y, Saitoh B, Takahashi O, Kitazawa H, Saito T, Nakajima H, Itoh T (2000) Primary amino acid and DNA sequences of gassericin T, a lactacin F-family bacteriocin produced by Lactobacillus gasseri SBT2055. Biosci Biotechnol Biochem 64:2201–2208. doi: 10.1271/bbb.64.2201 PubMedCrossRefGoogle Scholar
  24. Kawai Y, Ishii Y, Arakawa K et al (2004) Structural and functional differences in two cyclic bacteriocins with the same sequences produced by lactobacilli. Appl Environ Microbiol 70:2906–2911. doi: 10.1128/AEM.70.5.2906-2911.2004 PubMedCentralPubMedCrossRefGoogle Scholar
  25. Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120. doi: 10.1007/BF01731581 PubMedCrossRefGoogle Scholar
  26. Klaenhammer T, Kleerebezem M, Kopp M, Rescigno M (2012) The impact of probiotics and prebiotics on the immune system. Nat Rev Immunol 12:728–734. doi: 10.1038/nri3312 PubMedGoogle Scholar
  27. Lane D (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley and Sons, New York, pp 115–175Google Scholar
  28. MacPhee R, Miller W, Gloor G, McCormick J, Hammond J, Burton J, Reid G (2013) Influence of the vaginal microbiota on toxic shock syndrome Toxin 1 production by Staphylococcus aureus. Appl Environ Microbiol 79:1835–1842. doi: 10.1128/AEM.02908-12 PubMedCentralPubMedCrossRefGoogle Scholar
  29. Majhenic A, Matijasic B, Rogelj I (2003) Chromosomal location of the genetic determinants for bacteriocins produced by Lactobacillus gasseri K7. J Dairy Res 70:199–203. doi: 10.1017/S0022029903006162 CrossRefGoogle Scholar
  30. Majhenic A, Venema K, Allison G, Matijasić B, Rogelj I, Klaenhammer T (2004) DNA analysis of the genes encoding acidocin LF221 A and acidocin LF221 B, two bacteriocins produced by Lactobacillus gasseri LF221. Appl Microbiol Biotechnol 63:705–714. doi: 10.1007/s00253-003-1424-2 PubMedCrossRefGoogle Scholar
  31. Maldonado A, Ruiz-Barba J, Jiménez-Díaz R (2004) Production of plantaricin NC8 by Lactobacillus plantarum NC8 is induced in the presence of different types of gram-positive bacteria. Arch Microbiol 181:8–16. doi: 10.1007/s00203-003-0606-8 PubMedCrossRefGoogle Scholar
  32. Martín R, Miquel S, Ulmer J, Kechaou N, Langella P, Bermúdez-Humarán L (2013) Role of commensal and probiotic bacteria in human health: a focus on inflammatory bowel disease. Microb Cell Fact 12:71. doi: 10.1186/1475-2859-12-71 PubMedCentralPubMedCrossRefGoogle Scholar
  33. Messaoudi S, Kergourlay G, Rossero A, Ferchichi M, Prévost H, Drider D, Manai M, Dousset X (2011) Identification of lactobacilli residing in chicken ceca with antagonism against Campylobacter. Int Microbiol 14:103–110. doi: 10.2436/20.1501.01.140 PubMedGoogle Scholar
  34. Miteva V, Ivanova I, Budakov I, Pantev A, Stefanova T, Danova S, Moncheva P, Mitev V, Dousset X, Boyaval P (1998) Detection and characterization of a novel antibacterial substance produced by a Lactobacillus delbrueckii strain 1043. J Appl Microbiol 85:603–614. doi: 10.1046/j.1365-2672.1998.853568.x PubMedCrossRefGoogle Scholar
  35. Navarro L, Zarazaga M, Sáenz J, Ruiz-Larrea F, Torres C (2000) Bacteriocin production by lactic acid bacteria isolated from Rioja red wines. J Appl Microbiol 88:44–51. doi: 10.1046/j.1365-2672.2000.00865.x PubMedCrossRefGoogle Scholar
  36. Nissen-Meyer J, Rogne P, Oppegard C, Haugen H, Kristiansen P (2009) Structure-function relationships of the non-lanthionine-containing peptide (class II) bacteriocins produced by gram-positive bacteria. Curr Pharm Biotechnol 10:19–37. doi: 10.2174/138920109787048661 PubMedCrossRefGoogle Scholar
  37. Pavlova S, Kilic A, Kilic S, So J, Nader-Macias M, Simoes J, Tao L (2002) Genetic diversity of vaginal lactobacilli from women in different countries based on 16S rRNA gene sequences. J Appl Microbiol 92:451–459. doi: 10.1046/j.1365-2672.2002.01547.x PubMedCrossRefGoogle Scholar
  38. Piard J, Desmazeaud M (1992) Inhibiting factors produced by lactic acid bacteria. 2. Bacteriocins and other antimicrobial substances. Lait 72:13–142. doi: 10.1051/lait:199229 CrossRefGoogle Scholar
  39. Ravel J, Gajer P, Abdo Z et al (2011) Vaginal microbiome of reproductive-age women. Proc Natl Acad Sci USA 108:4680–4687PubMedCentralPubMedCrossRefGoogle Scholar
  40. Riley M, Wertz J (2002) Bacteriocin diversity: ecological and evolutionary perspectives. Biochimie 84:357–364. doi: 10.1016/S0300-9084(02)01421-9 PubMedCrossRefGoogle Scholar
  41. Sabia C, Anacarso I, Bergonzini A, Gargiulo R, Sarti M, Condò C, Messi P, De Niederhausern S, Iseppi R, Bondi M (2014) Detection and partial characterization of a bacteriocin-like substance produced by Lactobacillus fermentum CS57 isolated from human vaginal secretions. Anaerobe 26:41–45. doi: 10.1016/j.anaerobe.2014.01.004 PubMedCrossRefGoogle Scholar
  42. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  43. Selle K, Klaenhammer T (2013) Genomic and phenotypic evidence for probiotic influences of Lactobacillus gasseri on human health. FEMS Microbiol Rev 37:915–935. doi: 10.1111/1574-6976.12021 PubMedGoogle Scholar
  44. Simova E, Beshkova D, Dimitrov Zh (2009) Characterization and antimicrobial spectrum of bacteriocins produced by lactic acid bacteria isolated from traditional Bulgarian dairy products. J Appl Microbiol 106:692–701. doi: 10.1111/j.1365-2672.2008.04052.x PubMedCrossRefGoogle Scholar
  45. Stoyancheva G, Danova S, Boudakov I (2006) Molecular identification of vaginal lactobacilli isolated from Bulgarian women. Antonie van Leeuwenhoek J Microbiol 90:201–210. doi: 10.1007/s10482-006-9072-z PubMedCrossRefGoogle Scholar
  46. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599. doi: 10.1093/molbev/msm092 PubMedCrossRefGoogle Scholar
  47. Thompson J, Higgins D, Gibson T (1994) Clustal W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680PubMedCentralPubMedCrossRefGoogle Scholar
  48. Verhelst R, Verstraelen H, Claeys G, Verschraegen G, Delanghe J, Van Simaey L, De Ganck C, Temmerman M, Vaneechoutte M (2004) Cloning of 16S rRNA genes amplified from normal and disturbed vaginal microflora suggests a strong association between Atopobium vaginae, Gardnerella vaginalis and bacterial vaginosis. BMC Microbiol 4:16–26. doi: 10.1186/1471-2180-4-16 PubMedCentralPubMedCrossRefGoogle Scholar
  49. Witkin S (2007) Bacterial flora of the female genital tract: function and immune regulation. Best Pract Res Clin Obstet Gynaecol 21:347–354. doi: 10.1016/j.bpobgyn.2006.12.004 PubMedCrossRefGoogle Scholar
  50. Zhou X, Bent S, Schneider M, Davis C, Islam M, Forney L (2004) Characterization of vaginal microbial communities in adult healthy women using cultivation independent methods. Microbiology 150:2565–2573. doi: 10.1099/mic.0.26905-0 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Galina Stoyancheva
    • 1
  • Marta Marzotto
    • 2
  • Franco Dellaglio
    • 2
  • Sandra Torriani
    • 2
  1. 1.Department of Microbial Genetics, Institute of MicrobiologyBulgarian Academy of SciencesSofiaBulgaria
  2. 2.Dipartimento di BiotecnologieUniversità degli Studi di VeronaVeronaItaly

Personalised recommendations