Archives of Microbiology

, Volume 196, Issue 5, pp 375–383

Characterization and reactivity of broiler chicken sera to selected recombinant Campylobacter jejuni chemotactic proteins

  • Hung-Yueh Yeh
  • Kelli L. Hiett
  • John E. Line
  • Bruce S. Seal
Short Communication

Abstract

Campylobacter jejuni, a Gram-negative rod bacterium, is the leading causative agent of human acute bacterial gastroenteritis worldwide. Consumption and handling of raw or undercooked poultry are regarded as a major source for human infection. Because bacterial chemotaxis guides microorganisms to colonization and invasion in the host cells, proteins involved in chemotactic processes can be novel targets for vaccine development. In this communication, we report amplification, cloning and expression of the C. jejuni chemotactic proteins in an Escherichia coli expression system. A total of 15 chemotactic protein genes were successfully expressed. These recombinant proteins were confirmed by nucleotide sequencing, SDS-PAGE analysis and immunoblot analysis of six-His and hemagglutinin tags. Twelve recombinant chemotactic proteins were further tested whether they were antigenic using sera from broiler chickens older than 4 weeks. The immunoblot results show that each chicken serum reacted to a variety of the recombinant proteins, but all sera reacted to the Cjj0473 gene product (annotated as a methyl-accepting chemotaxis protein), suggesting that anti-Campylobacter antibodies may be prevalent in the poultry population. These antibody screening results provide a rationale for further evaluation of the Cjj0473 protein as a potential vaccine for broilers to improve human food safety.

Keywords

Campylobacter jejuni Poultry Chemotaxis ε-Proteobacteria Foodborne pathogen Zoonoses Methyl-accepting chemotaxis proteins 

Supplementary material

203_2014_969_MOESM1_ESM.xlsx (13 kb)
Supplementary material 1 (XLSX 12 kb)

References

  1. Alam MM, Tsai LL, Rollins SM, Sheikh A, Khanam F, Bufano MK, Yu Y, Wu-Freeman Y, Kalsy A, Sultana T, Sayeed MA, Jahan N, LaRocque RC, Harris JB, Leung DT, Brooks WA, Calderwood SB, Charles RC, Qadri F, Ryan ET (2013) Identification of in vivo-induced bacterial proteins during human infection with Salmonella enterica serotype Paratyphi A. Clin Vaccine Immunol 20:712–719PubMedCentralPubMedCrossRefGoogle Scholar
  2. Alex LA, Simon MI (1994) Protein histidine kinases and signal transduction in prokaryotes and eukaryotes. Trends Genet 10:133–138PubMedCrossRefGoogle Scholar
  3. Bannantine JP, Bayles DO, Waters WR, Palmer MV, Stabel JR, Paustian ML (2008a) Early antibody response against Mycobacterium avium subspecies paratuberculosis antigens in subclinical cattle. Proteome Sci 6:5PubMedCentralPubMedCrossRefGoogle Scholar
  4. Bannantine JP, Waters WR, Stabel JR, Palmer MV, Li L, Kapur V, Paustian ML (2008b) Development and use of a partial Mycobacterium avium subspecies paratuberculosis protein array. Proteomics 8:463–474PubMedCrossRefGoogle Scholar
  5. Bilwes AM, Alex LA, Crane BR, Simon MI (1999) Structure of CheA, a signal-transducing histidine kinase. Cell 96:131–141PubMedCrossRefGoogle Scholar
  6. Boukhvalova MS, Dahlquist FW, Stewart RC (2002) CheW binding interactions with CheA and Tar. Importance for chemotaxis signaling in Escherichia coli. J Biol Chem 277:22251–22259PubMedCrossRefGoogle Scholar
  7. Burgess-Brown NA, Sharma S, Sobott F, Loenarz C, Oppermann U, Gileadi O (2008) Codon optimization can improve expression of human genes in Escherichia coli: a multi-gene study. Protein Expr Purif 59:94–102PubMedCrossRefGoogle Scholar
  8. Chang C, Miller JF (2006) Campylobacter jejuni colonization of mice with limited enteric flora. Infect Immun 74:5261–5271PubMedCentralPubMedCrossRefGoogle Scholar
  9. Day CJ, Hartley-Tassell LE, Shewell LK, King RM, Tram G, Day SK, Semchenko EA, Korolik V (2012) Variation of chemosensory receptor content of Campylobacter jejuni strains and modulation of receptor gene expression under different in vivo and in vitro growth conditions. BMC Microbiol 12:128PubMedCentralPubMedCrossRefGoogle Scholar
  10. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797PubMedCentralPubMedCrossRefGoogle Scholar
  11. Elliott KT, Dirita VJ (2008) Characterization of CetA and CetB, a bipartite energy taxis system in Campylobacter jejuni. Mol Microbiol 69:1091–1103PubMedCentralPubMedCrossRefGoogle Scholar
  12. European Food Safety Authority (2010) The community summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in the European Union in 2008. EFSA J 8:1496Google Scholar
  13. Ewing B, Green P (1998) Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res 8:186–194PubMedCrossRefGoogle Scholar
  14. Ewing B, Hillier L, Wendl MC, Green P (1998) Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 8:175–185PubMedCrossRefGoogle Scholar
  15. Ewing CP, Andreishcheva E, Guerry P (2009) Functional characterization of flagellin glycosylation in Campylobacter jejuni 81–176. J Bacteriol 191:7086–7093PubMedCentralPubMedCrossRefGoogle Scholar
  16. Fath S, Bauer AP, Liss M, Spriestersbach A, Maertens B, Hahn P, Ludwig C, Schäfer F, Graf M, Wagner R (2011) Multiparameter RNA and codon optimization: a standardized tool to assess and enhance autologous mammalian gene expression. PLoS One 6:e17596PubMedCentralPubMedCrossRefGoogle Scholar
  17. Gershoni JM (1988) Protein blotting: a manual. Methods Biochem Anal 33:1–58PubMedCrossRefGoogle Scholar
  18. Griswold IJ, Dahlquist FW (2002) The dynamic behavior of CheW from Thermotoga maritima in solution, as determined by nuclear magnetic resonance: implications for potential protein–protein interaction sites. Biophys Chem 101–102:359–373PubMedCrossRefGoogle Scholar
  19. Guerry P, Ewing CP, Schirm M, Lorenzo M, Kelly J, Pattarini D, Majam G, Thibault P, Logan S (2006) Changes in flagellin glycosylation affect Campylobacter autoagglutination and virulence. Mol Microbiol 60:299–311PubMedCentralPubMedCrossRefGoogle Scholar
  20. Hames BD (1990) One-dimensional polyacrylamide gel electrophoresis. In: Hames BD, Rickwood D (eds) Gel electrophoresis of proteins: a practical approach, 2nd edn. Oxford University Press, New York, pp 1–147Google Scholar
  21. Handfield M, Brady LJ, Progulske-Fox A, Hillman JD (2000) IVIAT: a novel method to identify microbial genes expressed specifically during human infections. Trends Microbiol 8:336–339PubMedCrossRefGoogle Scholar
  22. Hang L, John M, Asaduzzaman M, Bridges EA, Vanderspurt C, Kirn TJ, Taylor RK, Hillman JD, Progulske-Fox A, Handfield M, Ryan ET, Calderwood SB (2003) Use of in vivo-induced antigen technology (IVIAT) to identify genes uniquely expressed during human infection with Vibrio cholerae. Proc Natl Acad Sci USA 100:8508–8513PubMedCentralPubMedCrossRefGoogle Scholar
  23. Hannu T, Mattila L, Rautelin H, Pelkonen P, Lahdenne P, Siitonen A, Leirisalo-Repo M (2002) Campylobacter-triggered reactive arthritis: a population-based study. Rheumatology 41:312–318PubMedCrossRefGoogle Scholar
  24. Harris JB, Baresch-Bernal A, Rollins SM, Alam A, LaRocque RC, Bikowski M, Peppercorn AF, Handfield M, Hillman JD, Qadri F, Calderwood SB, Hohmann E, Breiman RF, Brooks WA, Ryan ET (2006) Identification of in vivo-induced bacterial protein antigens during human infection with Salmonella enterica serovar Typhi. Infect Immun 74:5161–5168PubMedCentralPubMedCrossRefGoogle Scholar
  25. Hartley-Tassell LE, Shewell LK, Day CJ, Wilson JC, Sandhu R, Ketley JM, Korolik V (2010) Identification and characterization of the aspartate chemosensory receptor of Campylobacter jejuni. Mol Microbiol 75:710–730PubMedCrossRefGoogle Scholar
  26. Hendrixson DR, DiRita VJ (2004) Identification of Campylobacter jejuni genes involved in commensal colonization of the chick gastrointestinal tract. Mol Microbiol 52:471–484PubMedCrossRefGoogle Scholar
  27. Hendrixson DR, Akerley BJ, DiRita VJ (2001) Transposon mutagenesis of Campylobacter jejuni identifies a bipartite energy taxis system required for motility. Mol Microbiol 40:214–224PubMedCrossRefGoogle Scholar
  28. Hermans D, Van Deun K, Martel A, Van Immerseel F, Messens W, Heyndrickx M, Haesebrouck F, Pasmans F (2011) Colonization factors of Campylobacter jejuni in the chicken gut. Vet Res 42:82PubMedCentralPubMedCrossRefGoogle Scholar
  29. Hermans D, Pasmans F, Messens W, Martel A, Van Immerseel F, Rasschaert G, Heyndrickx M, Van Deun K, Haesebrouck F (2012) Poultry as a host for the zoonotic pathogen Campylobacter jejuni. Vector Borne Zoonotic Dis 12:89–98PubMedCrossRefGoogle Scholar
  30. Hess JF, Bourret RB, Simon MI (1988) Histidine phosphorylation and phosphoryl group transfer in bacterial chemotaxis. Nature 336:139–143PubMedCrossRefGoogle Scholar
  31. Hiett KL, Stintzi A, Andacht TM, Kuntz RL, Seal BS (2008) Genomic differences between Campylobacter jejuni isolates identify surface membrane and flagellar function gene products potentially important for colonizing the chicken intestine. Funct Integr Genomics 8:407–420PubMedCrossRefGoogle Scholar
  32. Howard SL, Jagannathan A, Soo EC, Hui JP, Aubry AJ, Ahmed I, Karlyshev A, Kelly JF, Jones MA, Stevens MP, Logan SM, Wren BW (2009) Campylobacter jejuni glycosylation island important in cell charge, legionaminic acid biosynthesis, and colonization of chickens. Infect Immun 77:2544–2556PubMedCentralPubMedCrossRefGoogle Scholar
  33. Hughes RA, Cornblath DR (2005) Guillain–Barré syndrome. Lancet 366:1653–1666PubMedCrossRefGoogle Scholar
  34. Humphrey T, O’Brien S, Madsen M (2007) Campylobacters as zoonotic pathogens: a food production perspective. Int J Food Microbiol 117:237–257PubMedCrossRefGoogle Scholar
  35. Janssen R, Krogfelt KA, Cawthraw SA, van Pelt W, Wagenaar JA, Owen RJ (2008) Host–pathogen interactions in Campylobacter infections: the host perspective. Clin Microbiol Rev 21:505–518PubMedCentralPubMedCrossRefGoogle Scholar
  36. Kane JF (1995) Effects of rare codon clusters on high-level expression of heterologous proteins in Escherichia coli. Curr Opin Biotechnol 6:494–500PubMedCrossRefGoogle Scholar
  37. Kubota K, Kasuga F, Iwasaki E, Inagaki S, Sakurai Y, Komatsu M, Toyofuku H, Angulo FJ, Scallan E, Morikawa K (2011) Estimating the burden of acute gastroenteritis and foodborne illness caused by Campylobacter, Salmonella, and Vibrio parahaemolyticus by using population-based telephone survey data, Miyagi Prefecture, Japan, 2005 to 2006. J Food Prot 74:1592–1598PubMedCrossRefGoogle Scholar
  38. Lawes JR, Vidal A, Clifton-Hadley FA, Sayers R, Rodgers J, Snow L, Evans SJ, Powell LF (2012) Investigation of prevalence and risk factors for Campylobacter in broiler flocks at slaughter: results from a UK survey. Epidemiol Infect 140:1725–1737PubMedCrossRefGoogle Scholar
  39. Lertsethtakarn P, Ottemann KM, Hendrixson DR (2011) Motility and chemotaxis in Campylobacter and Helicobacter. Annu Rev Microbiol 65:389–410PubMedCrossRefGoogle Scholar
  40. Li S, Chou H-H (2004) LUCY (2): an interactive DNA sequence quality trimming and vector removal tool. Bioinformatics 20:2865–2866PubMedCrossRefGoogle Scholar
  41. Lin J (2009) Novel approaches for Campylobacter control in poultry. Foodborne Pathog Dis 6:755–765PubMedCentralPubMedCrossRefGoogle Scholar
  42. Logan SM (2006) Flagellar glycosylation—a new component of the motility repertoire? Microbiology 152:1249–1262PubMedCrossRefGoogle Scholar
  43. Lowry JE, Goodridge L, Vernati G, Fluegel AM, Edwards WH, Andrews GP (2010) Identification of Brucella abortus genes in elk (Cervus elaphus) using in vivo-induced antigen technology (IVIAT) reveals novel markers of infection. Vet Microbiol 142:367–372PubMedCrossRefGoogle Scholar
  44. Marchant J, Wren B, Ketley J (2002) Exploiting genome sequence: predictions for mechanisms of Campylobacter chemotaxis. Trends Microbiol 10:155–159PubMedCrossRefGoogle Scholar
  45. McEvoy MM, Muhandiram DR, Kay LE, Dahlquist FW (1996) Structure and dynamics of a CheY-binding domain of the chemotaxis kinase CheA determined by nuclear magnetic resonance spectroscopy. Biochemistry 35:5633–5640PubMedCrossRefGoogle Scholar
  46. Moore JE, Corcoran D, Dooley JS, Fanning S, Lucey B, Matsuda M, McDowell DA, Mégraud F, Millar BC, O’Mahony R, O’Riordan L, O’Rourke M, Rao JR, Rooney PJ, Sails A, Whyte P (2005) Campylobacter. Vet Res 36:351–382PubMedCrossRefGoogle Scholar
  47. Mourey L, Da Re S, Pédelacq JD, Tolstykh T, Faurie C, Guillet V, Stock JB, Samama JP (2001) Crystal structure of the CheA histidine phosphotransfer domain that mediates response regulator phosphorylation in bacterial chemotaxis. J Biol Chem 276:31074–31082PubMedCrossRefGoogle Scholar
  48. Nielsen LN, Luijkx TA, Vegge CS, Johnsen CK, Nuijten P, Wren BW, Ingmer H, Krogfelt KA (2012) Identification of immunogenic and virulence-associated Campylobacter jejuni proteins. Clin Vaccine Immunol 19:113–119PubMedCentralPubMedCrossRefGoogle Scholar
  49. Rollins SM, Peppercorn A, Young JS, Drysdale M, Baresch A, Bikowski MV, Ashford DA, Quinn CP, Handfield M, Hillman JD, Lyons CR, Koehler TM, Calderwood SB, Ryan ET (2008) Application of in vivo induced antigen technology (IVIAT) to Bacillus anthracis. PLoS One 3:e1824PubMedCentralPubMedCrossRefGoogle Scholar
  50. Sahin O, Luo N, Huang S, Zhang Q (2003) Effect of Campylobacter-specific maternal antibodies on Campylobacter jejuni colonization in young chickens. Appl Environ Microbiol 69:5372–5379PubMedCentralPubMedCrossRefGoogle Scholar
  51. Schäffer AA, Aravind L, Madden TL, Shavirin S, Spouge JL, Wolf YI, Koonin EV, Altschul SF (2001) Improving the accuracy of PSI-BLAST protein database searches with composition-based statistics and other refinements. Nucleic Acids Res 29:2994–3005PubMedCentralPubMedCrossRefGoogle Scholar
  52. Shoaf-Sweeney KD, Larson CL, Tang X, Konkel ME (2008) Identification of Campylobacter jejuni proteins recognized by maternal antibodies of chickens. Appl Environ Microbiol 74:6867–6875PubMedCentralPubMedCrossRefGoogle Scholar
  53. Steentoft C, Vakhrushev SY, Joshi HJ, Kong Y, Vester-Christensen MB, Schjoldager KT, Lavrsen K, Dabelsteen S, Pedersen NB, Marcos-Silva L, Gupta R, Bennett EP, Mandel U, Brunak S, Wandall HH, Levery SB, Clausen H (2013) Precision mapping of the human O-GalNAc glycoproteome through SimpleCell technology. EMBO J 32:1478–1488PubMedCrossRefGoogle Scholar
  54. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739PubMedCentralPubMedCrossRefGoogle Scholar
  55. Thibault P, Logan SM, Kelly JF, Brisson JR, Ewing CP, Trust TJ, Guerry P (2001) Identification of the carbohydrate moieties and glycosylation motifs in Campylobacter jejuni flagellin. J Biol Chem 276:34862–34870PubMedCrossRefGoogle Scholar
  56. Vu A, Wang X, Zhou H, Dahlquist FW (2012) The receptor–CheW binding interface in bacterial chemotaxis. J Mol Biol 415:759–767PubMedCentralPubMedCrossRefGoogle Scholar
  57. Wadhams GH, Armitage JP (2004) Making sense of it all: bacterial chemotaxis. Nat Rev Mol Cell Biol 5:1024–1037PubMedCrossRefGoogle Scholar
  58. Wuichet K, Zhulin IB (2010) Origins and diversification of a complex signal transduction system in prokaryotes. Sci Signal 3:ra50PubMedCentralPubMedCrossRefGoogle Scholar
  59. Wuichet K, Alexander RP, Zhulin IB (2007) Comparative genomic and protein sequence analyses of a complex system controlling bacterial chemotaxis. Methods Enzymol 422:1–31PubMedCentralPubMedCrossRefGoogle Scholar
  60. Wyszyńska A, Raczko A, Lis M, Jagusztyn-Krynicka EK (2004) Oral immunization of chickens with avirulent Salmonella vaccine strain carrying C. jejuni 72Dz/92 cjaA gene elicits specific humoral immune response associated with protection against challenge with wild-type Campylobacter. Vaccine 22:1379–1389PubMedCrossRefGoogle Scholar
  61. Yeh H, Klesius PH (2011) Over-expression, purification and immune responses to Aeromonas hydrophila AL09-73 flagellar proteins. Fish Shellfish Immunol 31:1278–1283PubMedCrossRefGoogle Scholar
  62. Yeh H, Hiett KL, Line JE, Oakley BB, Seal BS (2013) Construction, expression, purification and antigenicity of recombinant Campylobacter jejuni flagellar proteins. Microbiol Res 168:192–198PubMedCrossRefGoogle Scholar
  63. Yeh H, Hiett KL, Line JE, Seal BS (2014) Characterization and antigenicity of recombinant Campylobacter jejuni flagellar capping protein FliD. J Med Microbiol. doi:10.1099/jmm.0.060095-0 PubMedGoogle Scholar
  64. Zilbauer M, Dorrell N, Wren BW, Bajaj-Elliott M (2008) Campylobacter jejuni-mediated disease pathogenesis: an update. Trans R Soc Trop Med Hyg 102:123–129PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg (outside the USA) 2014

Authors and Affiliations

  • Hung-Yueh Yeh
    • 1
  • Kelli L. Hiett
    • 1
  • John E. Line
    • 1
  • Bruce S. Seal
    • 1
  1. 1.Poultry Microbiological Safety Research Unit, Richard B. Russell Agricultural Research CenterAgricultural Research Service, United States Department of AgricultureAthensUSA

Personalised recommendations