Archives of Microbiology

, Volume 195, Issue 9, pp 661–670 | Cite as

Identification of a possible respiratory arsenate reductase in Denitrovibrio acetiphilus, a member of the phylum Deferribacteres

  • Kyle Denton
  • Morgan M. Atkinson
  • Stacey P. Borenstein
  • Alexis Carlson
  • Thomas Carroll
  • Kristen Cullity
  • Casey DeMarsico
  • Daniel Ellowitz
  • Andrea Gialtouridis
  • Rachel Gore
  • April Herleikson
  • Albee Yun Ling
  • Rachael Martin
  • Katherine McMahan
  • Piangfan Naksukpaiboon
  • Audrey Seiz
  • Katrina Yearwood
  • James O’Neill
  • Heather Wiatrowski
Original Paper

Abstract

Denitrovibrio acetiphilus N2460T is one of the few members of the phylum Deferribacteres with a sequenced genome. N2460T was capable of growing with dimethyl sulfoxide, selenate, or arsenate provided as a terminal electron acceptor, and we identified 15 genes that could possibly encode respiratory reductases for these compounds. The protein encoded by one of these genes, YP_003504839, clustered with respiratory arsenate reductases on a phylogenetic tree. Transcription of the gene for YP_003504839, Dacet_2121, was highly induced when arsenate was provided as a terminal electron acceptor. Dacet_2121 exists in a possible operon that is distinct from the previously characterized respiratory arsenate reductase operon in Shewanella sp. ANA-3.

Keywords

Deferribacteres Denitrovibrio Arsenate Arsenic Molybdopterin oxidoreductase Nitrate ArrA 

Supplementary material

203_2013_915_MOESM1_ESM.pdf (62 kb)
Supplementary material (PDF 62 kb)

References

  1. Afkar E, Lisak J et al (2003) The respiratory arsenate reductase from Bacillus selenitireducens strain MLS10. FEMS Microbiol Lett 226(1):107–112PubMedCrossRefGoogle Scholar
  2. Barringer JL, Mumford A et al (2010) Pathways for arsenic from sediments to groundwater to streams: biogeochemical processes in the Inner Coastal Plain, New Jersey, USA. Water Res 44(19):5532–5544PubMedCrossRefGoogle Scholar
  3. Bender KS, Shang C et al (2005) Identification, characterization, and classification of genes encoding perchlorate reductase. J Bacteriol 187(15):5090–5096PubMedCrossRefGoogle Scholar
  4. Bini E, Rauschenbach I et al. (2011) Complete genome sequence of Desulfurispirillum indicum strain S5T. Stand Genomic Sci 5(3):371–378PubMedCrossRefGoogle Scholar
  5. Busenlehner LS, Pennella MA et al (2003) The SmtB/ArsR family of metalloregulatory transcriptional repressors: structural insights into prokaryotic metal resistance. FEMS Microbiol Rev 27(2–3):131–143PubMedCrossRefGoogle Scholar
  6. Caccavo F Jr, Coates JD et al (1996) Geovibrio ferrireducens, a phylogenetically distinct dissimilatory Fe(III)-reducing bacterium. Arch Microbiol 165(6):370–376PubMedCrossRefGoogle Scholar
  7. Cai J, DuBow MS (1996) Expression of the Escherichia coli chromosomal ars operon. Can J Microbiol 42(7):662–671PubMedCrossRefGoogle Scholar
  8. Campbell KM, Malasarn D et al (2006) Simultaneous microbial reduction of iron(III) and arsenic(V) in suspensions of hydrous ferric oxide. Environ Sci Technol 40(19):5950–5955PubMedCrossRefGoogle Scholar
  9. Celik I, Gallicchio L et al (2008) Arsenic in drinking water and lung cancer: a systematic review. Environ Res 108(1):48–55PubMedCrossRefGoogle Scholar
  10. Cullen WR, Reimer KJ (1989) Arsenic speciation in the environment. Chem Rev 89(4):713–764CrossRefGoogle Scholar
  11. Cummings DE, Caccavo F et al (1999) Arsenic mobilization by the dissimilatory Fe(III)-reducing bacterium Shewanella alga BrY. Environ Sci Technol 33(5):723–729CrossRefGoogle Scholar
  12. Das N, Paul S et al (2012) Arsenic exposure through drinking water increases the risk of liver and cardiovascular diseases in the population of West Bengal, India. BMC Public Health 12(1):639PubMedCrossRefGoogle Scholar
  13. Davidson AL, Dassa E et al (2008) Structure, function, and evolution of bacterial ATP-binding cassette systems. Microbiol Mol Biol R 72(2):317–364CrossRefGoogle Scholar
  14. de Jong A, Pietersma H et al (2012) PePPER: a webserver for prediction of prokaryote promoter elements and regulons. BMC Genomics 13(1):299PubMedCrossRefGoogle Scholar
  15. Dimmic MW, Rest JS et al (2002) rtREV: an amino acid substitution matrix for inference of retrovirus and reverse transcriptase phylogeny. J Mol Evol 55(1):65–73PubMedCrossRefGoogle Scholar
  16. Ditty JL, Kvaal CA et al (2010) Incorporating genomics and bioinformatics across the life sciences curriculum. PLoS Biol 8(8):e1000448PubMedCrossRefGoogle Scholar
  17. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797PubMedCrossRefGoogle Scholar
  18. Gihring TM, Banfield JF (2001) Arsenite oxidation and arsenate respiration by a new Thermus isolate. FEMS Microbiol Lett 204(2):335–340PubMedCrossRefGoogle Scholar
  19. Giloteaux L, Holmes DE et al (2013) Characterization and transcription of arsenic respiration and resistance genes during in situ uranium bioremediation. ISME J 7(2):370–383PubMedCrossRefGoogle Scholar
  20. Grafe M, Eick MJ et al (2001) Adsorption of arsenate (V) and arsenite (III) on goethite in the presence and absence of dissolved organic carbon. Soil Sci Soc Am J 65(6):1680–1687CrossRefGoogle Scholar
  21. Hayashi K, Morooka N et al (2006) Highly accurate genome sequences of Escherichia coli K-12 strains MG1655 and W3110. Mol Syst Biol 2(1). doi:10.1038/msb4100049
  22. Huber R, Sacher M et al (2000) Respiration of arsenate and selenate by hyperthermophilic archaea. Syst Appl Microbiol 23(3):305–314PubMedCrossRefGoogle Scholar
  23. Hungate R (1969) A roll tube method for cultivation of strict anaerobes. Method Microbiol 3(Part B):117–132CrossRefGoogle Scholar
  24. Ilbert M, Méjean V et al (2004) Functional and structural analysis of members of the TorD family, a large chaperone family dedicated to molybdoproteins. Microbiology 150(4):935–943PubMedCrossRefGoogle Scholar
  25. Islam FS, Gault AG et al (2004) Role of metal-reducing bacteria in arsenic release from Bengal delta sediments. Nature 430(6995):68–71PubMedCrossRefGoogle Scholar
  26. Janssen PH, Liesack W et al (2002) Geovibrio thiophilus sp. nov., a novel sulfur-reducing bacterium belonging to the phylum Deferribacteres. Int J Syst Evol Micr 52(4):1341–1347CrossRefGoogle Scholar
  27. Johnson HA, Pelletier DA, Spormann AM (2001) Isolation and characterization of anaerobic ethylbenzene dehydrogenase, a novel Mo–Fe–S enzyme. J Bacteriol 183(15):4536–4542PubMedCrossRefGoogle Scholar
  28. Jumas-Bilak E, Roudière L et al (2009) Description of ‘Synergistetes’ phyl. nov. and emended description of the phylum ‘Deferribacteres’ and of the family Syntrophomonadaceae, phylum ‘Firmicutes’. Int J Syst Evol Microbiol 59(5):1028–1035PubMedCrossRefGoogle Scholar
  29. Katoh K, Asimenos G et al (2009) Multiple alignment of DNA sequences with MAFFT. Methods Mol Biol 537:39–64PubMedCrossRefGoogle Scholar
  30. Kengen SWM, Rikken GB et al (1999) Purification and characterization of (per)Chlorate reductase from the chlorate-respiring strain GR-1. J Bacteriol 181(21):6706–6711PubMedGoogle Scholar
  31. Kiss H, Lang E et al (2010) Complete genome sequence of Denitrovibrio acetiphilus type strain (N2460T). Stand Genomic Sci 2(3):270PubMedCrossRefGoogle Scholar
  32. Krafft T, Macy JM (1998) Purification and characterization of the respiratory arsenate reductase of Chrysiogenes arsenatis. Eur J Biochem 255(3):647–653PubMedCrossRefGoogle Scholar
  33. Kunisawa T (2011) Inference of the phylogenetic position of the phylum Deferribacteres from gene order comparison. Antonie Van Leeuwenhoek 99(2):417–422PubMedCrossRefGoogle Scholar
  34. Malasarn D, Saltikov C et al (2004) arrA is a reliable marker for As (V) respiration. Science 306(5695):455PubMedCrossRefGoogle Scholar
  35. Maniatis, T. (1989). In: Sambrook J, Fritsch EF, Maniatis T (eds) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York Google Scholar
  36. Markowitz VM, Chen IMA et al (2010) The integrated microbial genomes system: an expanding comparative analysis resource. Nucleic Acids Res 38(suppl 1):D382–D390PubMedCrossRefGoogle Scholar
  37. McDevitt CA, Hugenholtz P et al (2002) Molecular analysis of dimethyl sulphide dehydrogenase from Rhodovulum sulfidophilum: its place in the dimethyl sulphoxide reductase family of microbial molybdopterin-containing enzymes. Mol Microbiol 44(6):1575–1587PubMedCrossRefGoogle Scholar
  38. Myhr S, Torsvik T (2000) Denitrovibrio acetiphilus, a novel genus and species of dissimilatory nitrate-reducing bacterium isolated from an oil reservoir model column. Int J Syst Evol Microbiol 50(4):1611–1619PubMedCrossRefGoogle Scholar
  39. Narasingarao P, Häggblom MM (2007) Identification of anaerobic selenate-respiring bacteria from aquatic sediments. Appl Environ Microbiol 73(11):3519–3527PubMedCrossRefGoogle Scholar
  40. Navas-Acien A, Silbergeld EK et al (2008) Arsenic exposure and prevalence of type 2 diabetes in US adults. J Am Med Assoc (JAMA) 300(7):814–822CrossRefGoogle Scholar
  41. Niggemyer A, Spring S et al (2001) Isolation and characterization of a novel As(V)-reducing Bacterium: implications for arsenic mobilization and the genus Desulfitobacterium. Appl Environ Microbiol 67(12):5568–5580PubMedCrossRefGoogle Scholar
  42. Nonaka H, Keresztes G et al (2006) Complete genome sequence of the dehalorespiring bacterium Desulfitobacterium hafniense Y51 and comparison with Dehalococcoides ethenogenes 195. J Bacteriol 188(6):2262–2274PubMedCrossRefGoogle Scholar
  43. Notredame C, Higgins DG et al (2000) T-Coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol 302(1):205–218PubMedCrossRefGoogle Scholar
  44. Prakash S, Cooper G et al (2003) The ion transporter superfamily. BBA Biomembr 1618(1):79–92CrossRefGoogle Scholar
  45. Pruitt KD, Tatusova T et al (2012) NCBI reference sequences (RefSeq): current status, new features and genome annotation policy. Nucleic Acids Res 40(D1):D130–D135PubMedCrossRefGoogle Scholar
  46. Rahman MM, Ng JC et al (2009) Chronic exposure of arsenic via drinking water and its adverse health impacts on humans. Environ Geochem Health 31:189–200PubMedCrossRefGoogle Scholar
  47. Rauschenbach I, Yee N et al (2011) Energy metabolism and multiple respiratory pathways revealed by genome sequencing of Desulfurispirillum indicum strain S5. Environ Microbiol 3(6):1611–1621CrossRefGoogle Scholar
  48. Rauschenbach I, Bini E et al (2012) Physiological response of Desulfurispirillum indicum S5 to arsenate and nitrate as terminal electron acceptors. FEMS Microbiol Ecol 81(1):156–162PubMedCrossRefGoogle Scholar
  49. Rosen BP (2002) Biochemistry of arsenic detoxification. FEBS Lett 529(1):86–92PubMedCrossRefGoogle Scholar
  50. Rothery RA, Workun GJ et al (2008) The prokaryotic complex iron–sulfur molybdoenzyme family. BBA Biomembr 1778(9):1897–1929CrossRefGoogle Scholar
  51. Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132(3):365–386PubMedGoogle Scholar
  52. Saltikov CW, Newman DK (2003) Genetic identification of a respiratory arsenate reductase. PNAS 100(19):10983PubMedCrossRefGoogle Scholar
  53. Saltikov CW, Cifuentes A et al (2003) The ars detoxification system is advantageous but not required for As(V) respiration by the genetically tractable Shewanella species strain ANA-3. Appl Environ Microbiol 69(5):2800–2809PubMedCrossRefGoogle Scholar
  54. Santini JM, Stolz JF et al (2002) Isolation of a new arsenate-respiring bacterium–Physiological and Phylogenetic Studies. Geomicrobiol J 19(1):41–52CrossRefGoogle Scholar
  55. Schröder I, Rech S et al (1997) Purification and characterization of the selenate reductase from Thauera selenatis. J Biol Chem 272(38):23765–23768PubMedCrossRefGoogle Scholar
  56. Shi J, Vlamis-Gardikas A et al (1999) Reactivity of glutaredoxins 1, 2, and 3 from Escherichia coli shows that glutaredoxin 2 is the primary hydrogen donor to ArsC-catalyzed arsenate reduction. J Biol Chem 274(51):36039–36042PubMedCrossRefGoogle Scholar
  57. Stolz JF, Basu P et al (2006) Arsenic and selenium in microbial metabolism. Annu Rev Microbiol 60:107–130PubMedCrossRefGoogle Scholar
  58. Tamura K, Peterson D et al (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739PubMedCrossRefGoogle Scholar
  59. Thorell HD, Stenklo K, Karlsson J, Nilsson T (2003) A gene cluster for chlorate metabolism in Ideonella dechloratans. Appl Environ Microbiol 69(9):5585–5592PubMedCrossRefGoogle Scholar
  60. Tufano KJ, Reyes C et al (2008) Reductive processes controlling arsenic retention: revealing the relative importance of iron and arsenic reduction. Environ Sci Technol 42(22):8283–8289PubMedCrossRefGoogle Scholar
  61. Weiner JH, MacIsaac DP et al (1988) Purification and properties of Escherichia coli dimethyl sulfoxide reductase, an iron–sulfur molybdoenzyme with broad substrate specificity. J Bacteriol 170(4):1505–1510PubMedGoogle Scholar
  62. West AH, Stock AM (2001) Histidine kinases and response regulator proteins in two-component signaling systems. Trends Biochem Sci 26(6):369–376PubMedCrossRefGoogle Scholar
  63. Wu J, Rosen BP (1993) The arsD gene encodes a second trans-acting regulatory protein of the plasmid-encoded arsenical resistance operon. Mol Microbiol 8(3):615–623PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Kyle Denton
    • 1
    • 2
  • Morgan M. Atkinson
    • 1
  • Stacey P. Borenstein
    • 1
    • 3
  • Alexis Carlson
    • 1
  • Thomas Carroll
    • 1
  • Kristen Cullity
    • 1
  • Casey DeMarsico
    • 1
  • Daniel Ellowitz
    • 1
  • Andrea Gialtouridis
    • 1
  • Rachel Gore
    • 1
  • April Herleikson
    • 1
  • Albee Yun Ling
    • 1
  • Rachael Martin
    • 1
  • Katherine McMahan
    • 1
  • Piangfan Naksukpaiboon
    • 1
  • Audrey Seiz
    • 1
  • Katrina Yearwood
    • 1
  • James O’Neill
    • 1
  • Heather Wiatrowski
    • 1
  1. 1.Department of BiologyClark UniversityWorcesterUSA
  2. 2.Neuroscience DepartmentUniversity of Connecticut Health Sciences CenterFarmingtonUSA
  3. 3.Penn State UniversityUniversity ParkUSA

Personalised recommendations