Archives of Microbiology

, Volume 195, Issue 10–11, pp 765–771 | Cite as

Chlamydia bacteriophages

  • Joanna Śliwa-Dominiak
  • Ewa Suszyńska
  • Małgorzata Pawlikowska
  • Wiesław Deptuła


Phages are called “good viruses” due to their ability to infect and kill pathogenic bacteria. Chlamydia are small, Gram-negative (G−) microbes that can be dangerous to human and animals. In humans, these bacteria are etiological agents of diseases such as psittacosis or respiratory tract diseases, while in animals, the infection may result in enteritis in cattle and chronic bowel diseases, as well as miscarriages in sheep. The first-known representative of chlamydiaphages was Chp1. It was discovered in Chlamydia psittaci isolates. Since then, four more species of chlamydiaphages have been identified [Chp2, Chp3, φCPG1 φCPAR39 (φCpn1) and Chp4]. All of them were shown to infect Chlamydia species. This paper described all known chlamydiaphages. They were characterised in terms of origin, host range, and their molecular structure. The review concerns the characterisation of bacteriophages that infects pathogenic and dangerous bacteria with unusual, intracellular life cycles that are pathogenic. In the era of antibiotic resistance, it is difficult to cure chlamydophilosis. Those bacteriophages can be an alternative to antibiotics, but before this happens, we need to get to know chlamydiaphages better.


Bacterial viruses Chlamydia Infection Genome 


  1. Ackermann H-W, Prangishvili D (2012) Prokaryote viruses studied by electron microscopy. Arch Virol 157:1843–1849PubMedCrossRefGoogle Scholar
  2. Bergey DH, Harrison FC, Breed RS, Hammer BW, Huntoon FM (2011) Bergey’s manual of systematic bacteriology. Volume 4. The Bacteroidetes, Spirochaetes, Tenericutes (Mollicutes), Acidobacteria, Fibrobacteres, Fusobacteria, Dictyoglomi, Gemmatimonadetes, Lentisphaerae, Verrucomicrobia, Chlamydiae and Planctomycetes. Springer, New York USA, pp 846–865Google Scholar
  3. Bevan BJ, Labram J (1983) Laboratory transfer of a virus between isolates of Chlamydia psittaci. Vet Rec 112:280PubMedCrossRefGoogle Scholar
  4. Dąbrowska K, Switała-Jeleń K, Opolski A, Weber-Dąbrowska B, Górski A (2005) Bacteriophage penetration in vertebrates. J Appl Microbiol 98:7–13PubMedCrossRefGoogle Scholar
  5. Deptuła W, Pawlikowska M, Travnicek M (2002) Animal and human chlamydophilosis. Vet Med 58:337–340Google Scholar
  6. Dokland T, McKenna R, Ilag LL, Bowman BR, Incardona NL, Fane BA, Rossmann MG (1997) Structure of a viral procapsid with molecular scaffolding. Nature 389:308–313PubMedCrossRefGoogle Scholar
  7. Dokland T, Bernal RA, Burch A, Pletnev S, Fane BA, Rossmann MG (1999) The role of scaffolding proteins in the assembly of the small single-stranded DNA virus ΦX174. J Mol Biol 288:595–608PubMedCrossRefGoogle Scholar
  8. Everson JS, Garner SA, Fane B, Liu BL, Lambden PR, Clarke IN (2002) Biological properties and cell tropism of Chp2, a bacteriophage of the obligate intracellular bacterium Chlamydophila abortus. J Bacteriol 184:2748–2754PubMedCrossRefGoogle Scholar
  9. Everson JS, Garner SA, Lambden PR, Fane BA, Clarke IN (2003) Host range of chlamydiaphages φCPAR39 and Chp3. J Bacteriol 185:6490–6492PubMedCrossRefGoogle Scholar
  10. Garner SA, Everson JS, Lambden PR, Fane BA, Clarke IN (2004) Isolation, molecular characterization and genome sequence of a bacteriophage (Chp3) from Chlamydophila pecorum. Virus Genes 28:207–214PubMedCrossRefGoogle Scholar
  11. Hoestgaard-Jensen K, Christiansen G, Honoré B, Birkelund S (2011) Influence of the Chlamydia pneumoniae AR39 bacteriophage φCPAR39 on chlamydial inclusion morphology. FEMS Immunol Med Microbiol 62:148–156PubMedCrossRefGoogle Scholar
  12. Hsia RC, Ohayon H, Gounon P, Dautry-Varsat A, Bavoil PM (2000a) Phage infection of the obligate intracellular bacterium, Chlamydia psittaci strain guinea pig inclusion conjunctivitis. Microbes Infect 2:761–772PubMedCrossRefGoogle Scholar
  13. Hsia RC, Ting LM, Bavoil PM (2000b) Microvirus of Chlamydia psittaci strain guinea pig inclusion conjunctivitis: isolation and molecular characterization. Microbiology 146:1651–1660PubMedGoogle Scholar
  14. Karunakaran KP, Blanchard JF, Raudonikiene A, Shen C, Murdin AD, Brunham RC (2002) Molecular detection and seroepidemiology of the Chlamydia pneumoniae bacteriophage (φCpn1). J Clin Microbiol 40:4010–4014PubMedCrossRefGoogle Scholar
  15. Kim M, Park E, Roh SW, Bae J (2011) Diversity and abundance of single-stranded DNA viruses in human feces. Appl Environ Microbiol 77:8062–8070PubMedCrossRefGoogle Scholar
  16. King AMQ, Adams MJ, Carstens EB, Lefkowitz EJ (2012) Virus Taxonomy: classification and nomenclature of viruses. Ninth report of the International Committee on Taxonomy of Viruses. Elsevier–Academic Press, London, UK (ISBN: 978-0-12-384684-6), pp 385–393Google Scholar
  17. Krupovic M, Forterre P (2011) Microviridae goes temperate: microvirus-related provirus reside in the genomes of Bacteroidetes. PLoS ONE 6:e19893PubMedCrossRefGoogle Scholar
  18. Liu BL, Everson JS, Fane B, Giannikopoulou P, Vretou E, Lambden PR, Clarke IN (2000) Molecular characterization of a bacteriophage (Chp2) from Chlamydia psittaci. J Virol 74:3464–3469PubMedCrossRefGoogle Scholar
  19. Mårdh PA, Paavonen J, Puolakkainen M (1989) Chlamydia. Plenum Medical Book Company, New YorkCrossRefGoogle Scholar
  20. Pawlikowska M, Deptuła W (2012) Chlamydia and chlamydophila in human and animals. University of Stettin, StettinGoogle Scholar
  21. Pawlikowska M, Deptuła W (2007) Human diseases caused by Chlamydiae and Chlamydophila. Adv Hyg Med Exp 61:708–717Google Scholar
  22. Rank RG, Bowlin AK, Cané S, Shou H, Liu Z, Nagarajan UM, Bavoli PM (2009) Effect of chlamydiaphage phiCPG1 on the course of conjunctival infection with “Chlamydia cavie” in guinea pigs. Infect Immun 77:1216–1221PubMedCrossRefGoogle Scholar
  23. Read TD, Brunham RC, Shen C et al (2000a) Genome sequences of Chlamydia trachomatis MoPN and Chlamydia pneumoniea AR39. Nucleic Acids Res 28:1397–1406PubMedCrossRefGoogle Scholar
  24. Read TD, Fraser CM, Hsia RC, Bavoil PM (2000b) Comparative analysis of Chlamydia bacteriophages reveals variation localization to a putative receptor binding domain. Microb Comp Genomics 5:223–231PubMedGoogle Scholar
  25. Roux S, Krupovic M, Poulet A, Debroas D, Enault F (2012) Evolution and diversity of the Microviridae family through a collection of 81 new complete genomes assembled from virome reads. PLoS ONE 7(7):e40418PubMedCrossRefGoogle Scholar
  26. Rupp J, Solbach W, Gieffers J (2007) Prevalence, genetic conservation and transmissibility of the Chlamydia pneumoniae bacteriophage (φCpn1). FEMS Microbiol Lett 273:45–49PubMedCrossRefGoogle Scholar
  27. Sait M, Livingstone M, Graham R, Inglis NF, Wheelhouse N, Longbottom D (2011) Identification, sequencing and molecular analysis of Chp4, a novel chlamydiaphage of Chlamydophila abortus belonging to the family Microviridae. J Gen Virol 92:1733–1737PubMedCrossRefGoogle Scholar
  28. Salim O, Skilton RJ, Lambden PR, Fane BA, Clarke IN (2008) Behind the chlamydial cloak: the replication cycle of chlamydiaphage Chp2, revealed. Virology 377:440–445PubMedCrossRefGoogle Scholar
  29. Skilton RJ, Cutcliffe LT, Pickett MA, Lambden PR, Fane BA, Clarke IN (2007) Intracellular parasitism of chlamydiae: specific infectivity of chlamydiophage Chp2 in Chlamydophila abortus. J Bacteriol 189:4957–4959PubMedCrossRefGoogle Scholar
  30. Storey CC, Lusher M, Richmond SJ, Bacon J (1989a) Further characterization of a bacteriophage recovered from an avian strain of Chlamydia psittaci. J Gen Virol 70:1321–1327PubMedCrossRefGoogle Scholar
  31. Storey CC, Lusher M, Richmond SJ (1989b) Analysis of the complete nucleotide sequence of Chp1, a phage which infects avian Chlamydia psittaci. J Gen Virol 70:3381–3390PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Joanna Śliwa-Dominiak
    • 1
  • Ewa Suszyńska
    • 1
  • Małgorzata Pawlikowska
    • 1
  • Wiesław Deptuła
    • 1
  1. 1.Department of Microbiology, Faculty of BiologyUniversity of SzczecinSzczecinPoland

Personalised recommendations