Advertisement

Archives of Microbiology

, Volume 195, Issue 7, pp 463–471 | Cite as

Chryseobacterium yeoncheonense sp. nov., with ginsenoside converting activity isolated from soil of a ginseng field

  • Van-An Hoang
  • Yeon-Ju Kim
  • Ngoc Lan Nguyen
  • Deok-Chun Yang
Original Paper

Abstract

A Gram-staining negative, aerobic, non-motile, non-flagellate, yellow-pigmented, rod-shaped bacterial strain, designated strain DCY67T, was isolated from ginseng field in Republic of Korea. Strain DCY67T contained β-glucosidase activity which converts ginsenoside Rb1 to compound K. Optimum growth of DCY67T occurred at 30 °C and pH 6.0–6.5. Analysis of the 16S rRNA gene sequences revealed that strain DCY67T belonged to the family Flavobacteriaceae and was most closely related to Chryseobacterium ginsenosidimutans THG 15T (97.5 %). The genomic DNA G+C content was 36.1 mol%. The predominant quinones were MK-6 (90.9 %) and MK-7 (9.15 %). The major fatty acids were iso-C15:0, summed feature 3 (containing C16:1 ω7c and/or C16:1 ω6c) and iso-C17:0 3-OH. On the basis of these phenotypic, genotypic and chemotaxonomic studies, strain DCY67T represents a novel species of the genus Chryseobacterium, for which, name Chryseobacterium yeoncheonense sp. nov. proposed the type strain is DCY67T (=KCTC 32090T = JCM 18516T).

Keywords

Taxonomy Bacteroidetes Chryseobacterium yeoncheonense Ginsenoside bioconversion 

Notes

Acknowledgments

This research was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (#20110015122).

Supplementary material

203_2013_898_MOESM1_ESM.pptx (572 kb)
Supplementary material 1 (PPTX 571 kb)
203_2013_898_MOESM2_ESM.docx (25 kb)
Supplementary material 2 (DOCX 24 kb)

References

  1. Anzai Y, Kudo Y, Oyaizu H (1997) The phylogeny of the genera Chryseomonas, Flavimonas, and Pseudomonas supports synonymy of these three genera. Int J Syst Bacteriol 47:249–251PubMedCrossRefGoogle Scholar
  2. Bauer AW, Kirby WM, Sherris JC, Turck M (1966) Antibiotic susceptibility testing by a standardized single disk method. Am J ClinPathol 45:493–496Google Scholar
  3. Bernardet J-F, Nakagawa Y, Holmes B (2002) Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 52:1049–1070PubMedCrossRefGoogle Scholar
  4. Bernardet J-F, Hugo C, Bruun B (2006) The genera Chryseobacterium and Elizabethkingia. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes: a handbook on the biology of bacteria, vol 7, 3rd edn. Springer, New York, pp 638–676Google Scholar
  5. Bernardet J-F, Hugo C, Bruun B (2010) Genus X. Chryseobacterium Vandamme et al. 1994a. In Whitman W (ed) Bergey’s manual of systematic bacteriology, vol 4, 2nd edn. The Williams & Wilkins Co., Baltimore. Springer, New York, pp 180–196Google Scholar
  6. Busse HJ, Auling G (1988) Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. Syst Appl Microbiol 11:1–8CrossRefGoogle Scholar
  7. Busse H-J, Bunka S, Hensel A, Lubitz W (1997) Discrimination of members of the family Pasteurellaceae based on polyamine patterns. Int J Syst Bacteriol 47:698–708CrossRefGoogle Scholar
  8. Choi KT (2008) Botanical characteristics, pharmacological effects and medicinal components of Korean Panax ginseng C.A. Meyer. Acta Pharmacol Sin 29:1109–1118PubMedCrossRefGoogle Scholar
  9. Christensen WB (1946) Urea decomposition as a means of differentiating Proteus and paracolon cultures from each other and from Salmonella and Shigella types. J Bacteriol 52:461–466PubMedGoogle Scholar
  10. Chun J, Lee J-H, Jung Y, Kim M, Kim S, Kim BK, Lim YW (2007) EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261PubMedCrossRefGoogle Scholar
  11. Collins MD (1985) Isoprenoid quinone analyses in bacterial classification and identification. In Goodfellow M, Minnikin DE (eds) Chemical methods in bacterial systematics (society for applied bacteriology technical series no. 20). Academic Press, London, pp 267–287Google Scholar
  12. Cowan ST, Steel KJ (1974) Manual for the identification of medical bacteria. Cambridge University Press, CambridgeGoogle Scholar
  13. de Beer H, Hugo CJ, Jooste PJ, Willems A, Vancanneyt M, Coenye T, Vandamme P (2005) Chryseobacterium vrystaatense sp. nov., isolated from raw chicken in a chicken processing plant. Int J Syst Evol Microbiol 55:2149–2153PubMedCrossRefGoogle Scholar
  14. Ezaki T, Hashimoto Y, Yabuuchi E (1989) Fluorometric deoxyribonucleic acid hybridization in micro dilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacterial 39:224–229CrossRefGoogle Scholar
  15. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  16. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  17. Hantsis-Zacharov E, Senderovich Y, Halpern M (2008) Chryseobacterium bovis sp. nov., isolated from raw cow's milk. Int J Syst Evol Microbiol 58:1024–1028PubMedCrossRefGoogle Scholar
  18. Ilardi P, Fernández J, Avendaño-Herrera R (2009) Chryseobacterium piscicola sp. nov., isolated from diseased salmonid fish. Int J Syst Evol Microbiol 59:3001–3005PubMedCrossRefGoogle Scholar
  19. Im WT, Yang JE, Kim SY, Yi TH (2011) Chryseobacterium ginsenosidimutans sp. nov., a bacterium with ginsenoside-converting activity isolated from soil of a Rhusvernicifera-cultivated field. Int J Syst Evol Microbiol 61:1430–1435PubMedCrossRefGoogle Scholar
  20. Kämpfer P, Dreyer U, Neef A, Dott W, Busse H-J (2003) Chryseobacterium defluvii sp. nov., isolated from wastewater. Int J Syst Evol Microbiol 53:93–97PubMedCrossRefGoogle Scholar
  21. Kämpfer P, Arun AB, Young C-C, Chen W-M, Sridhar KR, Rekha PD (2010) Chryseobacterium arthrosphaerae sp. nov., isolated from the faeces of the pill millipede Arthrosphaera magna Attems. Int J Syst Evol Microbiol 60:1765–1769PubMedCrossRefGoogle Scholar
  22. Kim KK, Bae HS, Schumann P, Lee ST (2005a) Chryseobacterium daecheongense sp. nov., isolated from freshwater lake sediment. Int J Syst Evol Microbiol 55:133–138PubMedCrossRefGoogle Scholar
  23. Kim KK, Kim M-K, Lim JH, Park HY, Lee ST (2005b) Transfer of Chryseobacterium meningosepticum and Chryseobacterium miricola to Elizabethkingia gen. nov. as Elizabethkingia meningoseptica comb. nov. and Elizabethkingia miricola comb. nov. Int J Syst Evol Microbiol 55:1287–1293PubMedCrossRefGoogle Scholar
  24. Kim MK, Im W-T, Ohta H, Lee M, Lee S-T (2005c) Sphingopyxis granuli sp. nov., a β-glucosidase-producing bacterium in the family Sphingomonadaceae in α-4 subclass of the Proteobacteria. J Microbiol 43:152–157PubMedGoogle Scholar
  25. Kim MK, Lee JW, Lee KY, Yang DC (2005d) Microbial conversion of major ginsenoside Rb1 to pharmaceutically active minor ginsenoside Rd. J Microbiol 43:456–462PubMedGoogle Scholar
  26. Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  27. Kumar S, Tamura K, Jakobsen IB, Nei M (2001) MEGA2: molecular 9 evolutionary genetics analysis software. Bioinformatics 17:1244–1245PubMedCrossRefGoogle Scholar
  28. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, pp 115–176Google Scholar
  29. Lee SS (2007) Korean ginseng (ginseng cultivation), Korean ginseng and T. Research institute. 18–40Google Scholar
  30. Mesbah M, Premachandran U, Whitman WB (1989) Precise measurement of the G + C content of deoxyribonucleic acid by high performance liquid chromatography. Int J Syst Bacteriol 39:159–167CrossRefGoogle Scholar
  31. Minnikin DE, ODonnell AG, Goodfellow M, Alderson G, Athalye M, Schaal A, Parlett JH (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241CrossRefGoogle Scholar
  32. Nguyen NL, Kim YJ, Hoang VA, Min JW, Liang ZQ, Yang DC (2013) Bacillus ginsengisoli sp. nov., isolated from soil of a ginseng field. Int J Syst Evol Microbiol 63:855–860PubMedCrossRefGoogle Scholar
  33. Park JH (2004) Sun ginseng: a new processed ginseng with fortified activity. Food Ind Nutr 9:23–27Google Scholar
  34. Park MS, Jung SR, Lee KH, Lee MS, Do JO, Kim SB, Bae KS (2006) Chryseobacterium soldanellicola sp. nov. and Chryseobacterium taeanense sp. nov., isolated from roots of sand-dune plants. Int J Syst Evol Microbiol 56:433–438PubMedCrossRefGoogle Scholar
  35. Park CS, Yoo MH, Noh KH, Oh DK (2010) Biotransformation of ginsenosides by hydrolyzing the sugar moieties of ginsenosides using microbial glycosidases. Appl Microbiol Biotechnol 87:9–19PubMedCrossRefGoogle Scholar
  36. Quan Z-X, Kim KK, Kim M-K, Jin L, Lee S-T (2007) Chryseobacterium caeni sp. nov., isolated from bioreactor sludge. Int J Syst Evol Microbiol 57:141–145PubMedCrossRefGoogle Scholar
  37. Saitou N, Nei M (1987) The neighbour: joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  38. Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101. Newark, De: MIDI IncGoogle Scholar
  39. Shimomura K, Kaji S, Hiraishi A (2005) Chryseobacterium shigense sp. nov., a yellow-pigmented, aerobic bacterium isolated from a lactic acid beverage. Int J Syst Evol Microbiol 55:1903–1906PubMedCrossRefGoogle Scholar
  40. Skerman VBD (1967) A guide to the identification of the genera of bacteria, 2nd edn. Williams & Wilkins, BaltimoreGoogle Scholar
  41. Strahan BL, Failor KC, Batties AM, Hayes PS, Cicconi KM, Mason CT, Newman JD (2003) Chryseobacterium piperi sp. nov., isolated from a freshwater creek. Int J Syst Evol Microbiol 61:2162–2166CrossRefGoogle Scholar
  42. Sun H, Wang HT, Kwon WS, Kim YJ, In JG, Yang DC (2011) A simple and rapid technique for the authentication of the ginseng cultivar, Yunpoong, using an SNP marker in a large sample of ginseng leaves. Gene 487:75–79PubMedCrossRefGoogle Scholar
  43. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599PubMedCrossRefGoogle Scholar
  44. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882PubMedCrossRefGoogle Scholar
  45. Vandamme P, Bernardet J-F, Segers P, Kersters K, Holmes B (1994) New perspectives in the classification of the flavobacteria: description of Chryseobacterium gen. nov., Bergeyella gen. nov., and Empedobacter nom. rev. Int J Syst Bacteriol 44:827–831CrossRefGoogle Scholar
  46. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE et al (1987) International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464CrossRefGoogle Scholar
  47. Weon HY, Kim B-Y, Yoo S-H, Kwon S-W, Cho Y-H, Go SJ, Stackebrandt E (2006) Chryseobacterium wanjuense sp. nov., isolated from greenhouse soil in Korea. Int J Syst Evol Microbiol 56:1501–1504PubMedCrossRefGoogle Scholar
  48. Yassin AF, Hupfer H, Siering C, Busse HJ (2010) Chryseobacterium treverense sp. nov., isolated from a human clinical source. Int J Syst Evol Microbiol 60:1993–1998PubMedCrossRefGoogle Scholar
  49. Young CC, Kämpfer P, Shen FT, Lai WA, Arun AB (2005) Chryseobacterium formosense sp. nov., isolated from the rhizosphere of Lactuca sativa L. (garden lettuce). Int J Syst Evol Microbiol 55:423–426PubMedCrossRefGoogle Scholar
  50. Zhao X, Wang J, Li J, Fu L, Gao J, Du X, Bi H, Zhou Y, Tai G (2009) Highly selective biotransformation of ginsenoside Rb1 to Rd by the phytopathogenic fungus Cladosporium fulvum (syn. Fulvia fulva). J Ind Microbiol Biotechnol 36:721–726PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Korean Ginseng Center and Ginseng Genetic Resource BankKyung Hee UniversityGiheung-gu, Yongin-siRepublic of Korea

Personalised recommendations