Archives of Microbiology

, Volume 195, Issue 5, pp 313–322 | Cite as

Diversity of bacteria in surface ice of Austre Lovénbreen glacier, Svalbard

  • Yin-Xin Zeng
  • Ming Yan
  • Yong Yu
  • Hui-Rong Li
  • Jian-Feng He
  • Kun Sun
  • Fang Zhang
Short Communication

Abstract

Two 16S rRNA gene clone libraries Cores 1U and 2U were constructed using two ice core samples collected from Austre Lovénbreen glacier in Svalbard. The two libraries yielded a total of 262 clones belonging to 59 phylotypes. Sequences fell into 10 major lineages of the domain Bacteria, including Proteobacteria (alpha, beta, gamma and delta subdivisions), Bacteroidetes, Actinobacteria, Firmicutes, Acidobacteria, Deinococcus-Thermus, Chloroflexi, Planctomycetes, Cyanobacteria and candidate division TM7. Among them, Bacteroidetes, Actinobacteria, Alphaproteobacteria and Cyanobacteria were most abundant. UniFrac data showed no significant differences in community composition between the two ice cores. A total of nineteen bacterial strains from the genera Pseudoalteromonas and Psychrobacter were isolated from the ice cores. Phylogenetic and phenotypic analyses revealed a close relationship between the ice core isolates and bacteria in marine environments, indicating a wide distribution of some bacterial phylotypes in both terrestrial and marine ecosystems.

Keywords

Bacterial diversity Distribution Austre Lovénbreen glacier Marine environment 

Notes

Acknowledgments

This research was supported by the National Natural Science Foundation of China (grant no. 40876097, 40876098, 41076130 and 41076131), the Public Science and Technology Research Funds Projects of Ocean (Grant No. 201105022), Chinese Polar Environment Comprehensive Investigation and Assessment Program (grant no. CHINARE2012-02-01) and the Youth Marine Science Foundation of State Oceanic Administration (Grant No. 2011104). We thank Chun-Lei An and Lei-Bao Liu for providing the ice core samples. We also are grateful to the anonymous reviewers for suggestive comments and modification.

References

  1. Alekhina IA, Marie D, Petit JR, Lukin VV, Zubkov VM, Bulat SA (2007) Molecular analysis of bacterial diversity in kerosene-based drilling fluid from the deep ice borehole at Vostok, East Antarctica. FEMS Microbiol Ecol 59:289–299PubMedCrossRefGoogle Scholar
  2. Amato P, Hennebelle R, Magand O, Sancelme M, Delort AM, Barbante C, Boutron C, Ferrari C (2007) Bacterial characterization of the snow cover at Spitzberg, Svalbard. FEMS Microbiol Ecol 59:255–264PubMedCrossRefGoogle Scholar
  3. Anesio AM, Sattler B, Foreman C, Telling J, Hodson A, Tranter M, Psenner R (2010) Carbon fluxes through bacterial communities on glacier surfaces. Ann Glaciol 51:32–40CrossRefGoogle Scholar
  4. Bakermans C, Ayala-del-Río HL, Ponder MA, Vishnivetskaya T, Gilichinsky D, Thomashow MF, Tiedje JM (2006) Psychrobacter cryohalolentis sp. nov. and Psychrobacter arcticus sp. nov., isolated from Siberian permafrost. Int J Syst Evol Microbiol 56:1285–1291PubMedCrossRefGoogle Scholar
  5. Battin TJ, Wille A, Sattler B, Psenner R (2001) Phylogenetic and functional heterogeneity sediment biofilms along environmental gradients in a glacial stream. Appl Environ Microbiol 67:799–807PubMedCrossRefGoogle Scholar
  6. Baumann P, Baumann L, Bowditch RD, Beaman B (1984) Taxonomy of Alteromonas: A. nigrifaciens sp. nov., nom. rev.; A. macleodii; and A. haloplanktis. Int J Syst Bacteriol 34:145–149CrossRefGoogle Scholar
  7. Bosshard PP, Santini Y, Grüter DG, Stettler R, Bachofen R (2000) Bacterial diversity and community composition in the chemocline of the meromictic alpine Lake Cadagno as revealed by 16S rRNA gene analysis. FEMS Microbiol Ecol 31:173–182PubMedCrossRefGoogle Scholar
  8. Bowman JS, Rasmussen S, Blom N, Deming JW, Rysgaard S, Sicheritz-Ponten T (2012) Microbial community structure of Arctic multiyear sea ice and surface seawater by 454 sequencing of the 16S RNA gene. ISME J 6:11–20PubMedCrossRefGoogle Scholar
  9. Bozal N, Montes MJ, Tudela E, Guinea J (2003) Characterization of several Psychrobacter strains isolated from Antarctic environments and description of Psychrobacter luti sp. nov. and Psychrobacter fozii sp. nov. Int J Syst Evol Microbiol 53:1093–1100PubMedCrossRefGoogle Scholar
  10. Burrows SM, Elbert W, Lawrence MG, Pöschl U (2009) Bacteria in the global atmosphere-Part 1: review and synthesis of literature data for different ecosystems. Atmos Chem Phys 9:9263–9280CrossRefGoogle Scholar
  11. Callegan RP, Nobre MF, McTernan PM, Battista JR, Navarro-Gonzalez R, McKay CP, da Costa MS, Rainey FA (2008) Description of four novel psychrophilic, ionizing radiation-sensitive Deinococcus species from alpine environments. Int J Syst Evol Microbiol 58:1252–1258PubMedCrossRefGoogle Scholar
  12. de la Torre JR, Goebel BM, Friedmann EI, Pace NR (2003) Microbial diversity of cryptoendolithic communities from the McMurdo Dry Valleys, Antarctica. Appl Environ Microbiol 69:3858–3867PubMedCrossRefGoogle Scholar
  13. De Ley J, Cattoir H, Reynaerts A (1970) The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142PubMedCrossRefGoogle Scholar
  14. Edwards A, Anesio AM, Rassner SM, Sattler B, Hubbard B, Perkins WT, Young M, Griffith GW (2011) Possible interactions between bacterial diversity, microbial activity and supraglacial hydrology of cryoconite holes in Svalbard. ISME J 5:150–160PubMedCrossRefGoogle Scholar
  15. Fahlgren C, Hagström A, Nilsson D, Zweifel UL (2010) Annual variations in the diversity, viability, and origin of airborne bacteria. Appl Environ Microbiol 76:3015–3025PubMedCrossRefGoogle Scholar
  16. Foreman CM, Sattler B, Mikucki DL, Porazinska DL, Priscu JC (2007) Metabolic activity and diversity of cryoconites in the Taylor Valley Antarctica. J Geophys Res 112:G04S32CrossRefGoogle Scholar
  17. Goodfellow M, Williams ST (1983) Ecology of actinomycetes. Annu Rev Microbiol 37:189–216PubMedCrossRefGoogle Scholar
  18. Griselin M, Marlin C, Laffly D, Bernard E, Delangle E (2009) Forty years of weather data to understand recent climate change in the arctic (Svalbard, 79°N). IOP Conf Series: Earth and Environmental Science 6:012009Google Scholar
  19. Hodson A, Anesio AM, Tranter M, Fountain A, Osborn M, Priscu J, Laybourn-Parry J, Sattler B (2008) Glacial ecosystems. Ecol Monogr 78:41–67CrossRefGoogle Scholar
  20. Holmström C, Kjelleberg S (1999) Marine Pseudoalteromonas species are associated with higher organisms and produce biologically active extracellular agents. FEMS Microbiol Ecol 30:285–293PubMedCrossRefGoogle Scholar
  21. Hop H, Pearson T, Hegseth EN, Kovacs KM, Wiencke C, Kwasniewski S, Eiane K, Mehlum F, Gulliksen B, Wlodarska-Kowalczuk M, Lydersen C, Weslawski JM, Cochrane S, Gabrielsen GW, Leakey RJG, Lønne OJ, Zajaczkowski M, Falk-Petersen S, Kendall M, Wängberg S-Å, Bischof K, Voronkov AY, Kovaltchouk NA, Wiktor J, Poltermann M, di Prisco G, Papucci C, Gerland S (2002) The marine ecosystem of Kongsfjorden, Svalbard. Polar Res 21:167–208CrossRefGoogle Scholar
  22. Huss VAR, Festl H, Schleifer KH (1983) Studies on the spectrometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192PubMedCrossRefGoogle Scholar
  23. Ito H, Watanabe H, Takeshia M, Iizuka H (1983) Isolation and identification of radiation-resistant cocci belonging to the genus Deinnococcus from sewage sludges and animal feeds. Agric Biol Chem 47:1239–1247CrossRefGoogle Scholar
  24. Kämpfer P, Rainey FA, Andersson MA, Nurmiaho Lassila EL, Ulrych U, Busse HJ, Weiss N, Mikkola R, Salkinoja-Salonen M (2000) Frigoribacterium faeni gen. nov., sp. nov., a novel psychrophilic genus of the family Microbacteriaceae. Int J Syst Evol Microbiol 50:355–363PubMedCrossRefGoogle Scholar
  25. Kellogg CA, Griffin DW (2006) Aerobiology and the global transport of desert dust. Trends Ecol Evol 21:638–644PubMedCrossRefGoogle Scholar
  26. Lee YK, Sung KC, Yim JH, Park KJ, Chung H, Lee HK (2005) Isolation of protease-producing Arctic marine bacteria. Ocean Polar Res 27:215–219CrossRefGoogle Scholar
  27. Leibeling S, Schmidt F, Jehmlich N, von Bergen M, Müller RH, Harms H (2010) Declining capacity of starving Delftia acidovorans MC1 to degrade phenoxypropionate herbicides correlates with oxidative modification of the initial enzyme. Environ Sci Technol 44:3793–3799PubMedCrossRefGoogle Scholar
  28. Liu Y, Yao T, Jiao N, Kang S, Xu B, Zeng Y (2009) Bacterial diversity in the snow over Tibetan Plateau Glaciers. Extremophiles 13:411–423PubMedCrossRefGoogle Scholar
  29. Mapelli F, Marasco R, Rizzi A, Baldi F, Ventura S, Daffonchio D, Borin S (2011) Bacterial communities involved in soil formation and plant establishment triggered by pyrite bioweathering on arctic moraines. Microb Ecol 61:438–447PubMedCrossRefGoogle Scholar
  30. Marmur J, Doty P (1962) Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118PubMedCrossRefGoogle Scholar
  31. Mayer J, Denger K, Smits TH, Hollemeyer K, Groth U, Cook AM (2006) N-acetyltaurine dissimilated via taurine by Delftia acidovorans NAT. Arch Microbiol 186:61–67PubMedCrossRefGoogle Scholar
  32. Miteva VI, Sheridan PP, Brenchley JE (2004) Phylogenetic and physiological diversity of microorganisms isolated from a deep Greenland glacier ice core. Appl Environ Microbiol 70:202–213PubMedCrossRefGoogle Scholar
  33. Morgan-Kiss RM, Priscu JC, Pocock T, Gudynaite-Savitch L, Huner NP (2006) Adaptation and acclimation of photosynthetic microorganisms to permanently cold environments. Microbiol Mol Biol Rev 70:222–252PubMedCrossRefGoogle Scholar
  34. Mueller DR, Vincent WF, Pollard WH, Fritsen CH (2001) Glacial cryoconite ecosystems: a bipolar comparison of algal communities and habitats. Nova Hedwigia 123:173–197Google Scholar
  35. Murayama M, Kakinuma Y, Maeda Y, Rao JR, Matsuda M, Xu J, Moore PJ, Millar BC, Rooney PJ, Goldsmith CE, Loughrey A, McMahon MA, McDowell DA, Moore JE (2010) Molecular identification of airborne bacteria associated with aerial spraying of bovine slurry waste employing 16S rRNA gene PCR and gene sequencing techniques. Ecotoxicol Environ Saf 73:443–447PubMedCrossRefGoogle Scholar
  36. Nagle VL, Mhalsekar NM, Jagtap TG (2010) Isolation, optimization and characterization of selected Cyanophycean members. Indian J Mar Sci 39:212–218Google Scholar
  37. Noble PA, Dabinett PE, Crow J (1990) A numerical taxonomic study of pelagic and benthic surface-layer bacteria in seasonally-cold coastal waters. Syst Appl Microbiol 13:77–85CrossRefGoogle Scholar
  38. Porazinska DL, Fountain AG, Nylen TH, Tranter M, Virginia RA, Wall DH (2004) The biodiversity and biogeochemistry of cryoconite holes from McMurdo Dry Valley glaciers, Antarctica. Arct Antarct Alp Res 36:84–91CrossRefGoogle Scholar
  39. Reddy GS, Prakash JS, Srinivas R, Matsumoto GI, Shivaji S (2003) Leifsonia rubra sp. nov. and Leifsonia aurea sp. nov., psychrophiles from a pond in Antarctica. Int J Syst Evol Microbiol 53:977–984PubMedCrossRefGoogle Scholar
  40. Reddy GSN, Prabagaran SR, Shivaji S (2008) Leifsonia pindariensis sp. nov., isolated from the Pindari glacier of the Indian Himalayas, and emended description of the genus Leifsonia. Int J Syst Evol Microbiol 58:2229–2234PubMedCrossRefGoogle Scholar
  41. Rodrigues DF, Jesus EDC, Ayala-del-Rio HL, Pellizari VH, Gilichinsky D, Sepulveda-Torres L, Tiedje JM (2009) Biogeography of two cold-adapted genera: Psychrobacter and Exiguobacterium. ISME J 3:658–665PubMedCrossRefGoogle Scholar
  42. Šabacká M, Elster J (2006) Response of cyanobacteria and algae from Antarctic wetland habitats to freezing and desiccation stress. Polar Biol 30:31–37CrossRefGoogle Scholar
  43. Sambrook J, Frisch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  44. Sheridan P, Miteva VI, Brenchley JE (2003) Phylogenetic analysis of 16S rDNA of an anaerobic psychrophilic community obtained from a Greenland glacier ice core. Appl Environ Microbiol 69:2153–2160PubMedCrossRefGoogle Scholar
  45. Simon C, Wiezer A, Strittmatter AW, Daniel R (2009) Phylogenetic diversity and metabolic potential revealed in a glacier ice metagenome. Appl Environ Microbiol 75:7519–7526PubMedCrossRefGoogle Scholar
  46. Skidmore M, Anderson SP, Sharp M, Foght J, Lanoil BD (2005) Comparison of microbial community compositions of two subglacial environments reveals a possible role for microbes in chemical weathering processes. Appl Environ Microbiol 71:6986–6997PubMedCrossRefGoogle Scholar
  47. Srinivas TNR, Singh SM, Pradhan S, Pratibha MS, Hara Kishore K, Singh AK, Begum Z, Prabagaran SR, Reddy GSN, Shivaji S (2011) Comparison of bacterial diversity in proglacial soil from Kafni Glacier, Himalayan Mountain ranges, India, with the bacterial diversity of other glaciers in the world. Extremophiles 15:673–690PubMedCrossRefGoogle Scholar
  48. Stibal M, Sabacká M, Kastovská K (2006) Microbial communities on glacier surfaces in Svalbard: impact of physical and chemical properties on abundance and structure of cyanobacteria and algae. Microb Ecol 52:644–654PubMedCrossRefGoogle Scholar
  49. Vardhan Reddy PV, Shiva Nageswara Rao SS, Pratibha MS, Sailaja B, Kavya B, Manorama RR, Singh SM, Radha Srinivas TN, Shivaji S (2009) Bacterial diversity and bioprospecting for cold-active enzymes from culturable bacteria associated with sediment from a melt water stream of Midtre Lovenbreen glacier, an Arctic glacier. Res Microbiol 160:538–546PubMedCrossRefGoogle Scholar
  50. Vela AI, Collins MD, Latre MV, Mateos A, Moreno MA, Hutson R, Domínguez L, Fernández-Garayzábal JF (2003) Psychrobacter pulmonis sp. nov., isolated from the lungs of lambs. Int J Syst Evol Microbiol 53:415–419PubMedCrossRefGoogle Scholar
  51. Ventura M, Canchaya C, Tauch A, Chandra G, Fitzgerald GF, Chater KF, van Sinderen D (2007) Genomics of Actinobacteria: tracing the evolutionary history of an ancient phylum. Microbiol Mol Biol Rev 71:495–548PubMedCrossRefGoogle Scholar
  52. Wakelin SA, Nelson PN, Armour JD, Rasiah V, Colloff MJ (2011) Bacterial community structure and denitrifier (nir-gene) abundance in soil water and groundwater beneath agricultural land in tropical North Queensland, Australia. Soil Res 49:65–76CrossRefGoogle Scholar
  53. Xiang S, Yao T, An L, Xu B, Wang J (2005) 16S rRNA sequences and differences in bacteria isolated from the Muztag Ata Glacier at increasing depths. Appl Environ Microbiol 71:4619–4627PubMedCrossRefGoogle Scholar
  54. Xiang SR, Shang TC, Chen Y, Yao TD (2009a) Deposition and postdeposition mechanisms as possible drivers of microbial population variability in glacier ice. FEMS Microbiol Ecol 70:9–20PubMedCrossRefGoogle Scholar
  55. Xiang SR, Shang TC, Chen Y, Jing ZF, Yao TD (2009b) Dominant bacteria and biomass in the Kuytun 51 Glacier. Appl Environ Microbiol 75:7287–7290PubMedCrossRefGoogle Scholar
  56. Xie S, Yao TD, Kang S, Xu B, Duan K, Thompson LG (2000) Geochemical analyses of a Himalayan snowpit profile: implications for atmospheric pollution and climate. Org Geochem 31:15–23CrossRefGoogle Scholar
  57. Yamamoto S, Harayama S (1995) PCR amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis of Pseudomonas putida strains. Appl Environ Microbiol 61:1104–1109PubMedGoogle Scholar
  58. Yang Y, Itoh T, Yokobori SI, Itahashi S, Shimada H, Satoh K, Ohba H, Narumi I, Yamagishi A (2009) Deinococcus aerius sp. nov., isolated from the high atmosphere. Int J Syst Evol Microbiol 59:1862–1866PubMedCrossRefGoogle Scholar
  59. Yumoto I, Hirota K, Sogabe Y, Nodasaka Y, Yokota Y, Hoshino T (2003) Psychrobacter okhotskensis sp. nov., a lipase-producing facultative psychrophile isolated from the coast of the Okhotsk Sea. Int J Syst Evol Microbiol 53:1985–1989PubMedCrossRefGoogle Scholar
  60. Zeng Y, Liu W, Li H, Yu Y, Chen B (2007) Effect of restriction endonucleases on assessment of biodiversity of cultivable polar marine planktonic bacteria by amplified ribosomal DNA restriction analysis. Extremophiles 11:685–692PubMedCrossRefGoogle Scholar
  61. Zeng Y, Zheng T, Yu Y, Chen B, He J (2010) Relationships between Arctic and Antarctic Shewanella strains evaluated by a polyphasic taxonomic approach. Polar Biol 33:531–541CrossRefGoogle Scholar
  62. Zhang S, Yang G, Wang Y, Hou S (2010a) Abundance and community of snow bacteria from three glaciers in the Tibetan Plateau. J Environ Sci (China) 22:1418–1424CrossRefGoogle Scholar
  63. Zhang SH, Hou SG, Yang GL, Wang JH (2010b) Bacterial community in the East Rongbuk Glacier, Mt. Qomolangma (Everest) by culture and culture-independent methods. Microbiol Res 165:336–345PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Yin-Xin Zeng
    • 1
    • 2
  • Ming Yan
    • 1
  • Yong Yu
    • 1
  • Hui-Rong Li
    • 1
  • Jian-Feng He
    • 1
  • Kun Sun
    • 1
  • Fang Zhang
    • 1
  1. 1.Key Laboratory for Polar Science of State Oceanic AdministrationPolar Research Institute of ChinaShanghaiChina
  2. 2.College of Biological EngineeringJimei UniversityXiamenChina

Personalised recommendations