Advertisement

Archives of Microbiology

, Volume 194, Issue 7, pp 637–641 | Cite as

The inner membrane protein, YhiM, is necessary for Escherichia coli (E. coli) survival in acidic conditions

  • Tuan M. Nguyen
  • Rebecca L. Sparks-ThissenEmail author
Short Communication

Abstract

Escherichia coli must be able to survive extreme acidic conditions. We were interested in determining the role of the inner membrane protein YhiM in survival in acidic conditions. Previous data demonstrated that the yhiM gene was upregulated in acidic conditions (Tucker et al. in J Bacteriol. 184:6551–6558, 2002). We therefore tested tn10 insertions into the yhiM gene for their ability to survive at low pH (pH 2.5). We show that YhiM was required for survival at pH 2.5. We also tested the YhiM dependence of the different acid resistance pathways. YhiM was required for the RpoS, glutamine and lysine–dependent acid resistance pathways. In contrast, YhiM was not required for the arginine-dependent acid resistance pathway.

Keywords

E. coli Acid resistance Inner membrane protein Acid stress 

References

  1. Ali SS, Beckett E, Bae SJ, Navarre WW (2011) The 5.5 protein of phage T7 inhibits H-NS through interactions with the central oligomerization domain. J Bacteriol 193:4881–4892. doi: 10.1128/JB.05198-11 PubMedCrossRefGoogle Scholar
  2. Baba T et al (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2(2006):0008. doi: 10.1038/msb4100050 PubMedGoogle Scholar
  3. Bearson S, Bearson B, Foster JW (1997) Acid stress responses in enterobacteria. FEMS Microbiol Lett 147:173–180. doi: 10.1111/j.1574-6968.1997.tb10238.x PubMedCrossRefGoogle Scholar
  4. Castanie-Cornet MP, Penfound TA, Smith D, Elliott JF, Foster JW (1999) Control of acid resistance in Escherichia coli. J Bacteriol 181:3525–3535PubMedGoogle Scholar
  5. Foster JW (2004) Escherichia coli acid resistance: tales of an amateur acidophile. Nat Rev Microbiol 2:898–907. doi: 10.1038/nrmicro1021 PubMedCrossRefGoogle Scholar
  6. Hersh BM, Farooq FT, Barstad DN, Blankenhorn DL, Slonczewski JL (1996) A glutamate-dependent acid resistance gene in Escherichia coli. J Bacteriol 178:3978–3981PubMedGoogle Scholar
  7. Heyde M, Portalier R (1987) Regulation of major outer membrane porin proteins of Escherichia coli K 12 by pH. Mol Gen Genet 208:511–517PubMedCrossRefGoogle Scholar
  8. Iyer R, Williams C, Miller C (2003) Arginine-agmatine antiporter in extreme acid resistance in Escherichia coli. J Bacteriol 185:6556–6561PubMedCrossRefGoogle Scholar
  9. Kashiwagi K, Miyamoto S, Suzuki F, Kobayashi H, Igarashi K (1992) Excretion of putrescine by the putrescine-ornithine antiporter encoded by the potE gene of Escherichia coli. Proc Natl Acad Sci USA 89:4529–4533PubMedCrossRefGoogle Scholar
  10. Krin E, Danchin A, Soutourina O (2010) Decrypting the H-NS-dependent regulatory cascade of acid stress resistance in Escherichia coli. BMC Microbiol 10:273. doi: 10.1186/1471-2180-10-273 PubMedCrossRefGoogle Scholar
  11. McCann MP, Kidwell JP, Matin A (1991) The putative sigma factor KatF has a central role in development of starvation-mediated general resistance in Escherichia coli. J Bacteriol 173:4188–4194PubMedGoogle Scholar
  12. McIver KS, Kessler E, Olson JC, Ohman DE (1995) The elastase propeptide functions as an intramolecular chaperone required for elastase activity and secretion in Pseudomonas aeruginosa. Mol Microbiol 18:877–889PubMedCrossRefGoogle Scholar
  13. Mitchell JE et al (2007) The Escherichia coli regulator of sigma 70 protein, Rsd, can up-regulate some stress-dependent promoters by sequestering sigma 70. J Bacteriol 189:3489–3495. doi: 10.1128/JB.00019-07 PubMedCrossRefGoogle Scholar
  14. Rudd K (2000) EcoGene: a genome sequence database for Escherichia coli K-12. Nucleic Acids Res 28:60–64. doi: 10.1093/nar/28.1.60 PubMedCrossRefGoogle Scholar
  15. Silhavy TJ, Berman ML, Enquist LW (1984) Experiments with Gene Fusions. Cold Spring Harbor, Cold Spring Harbor LaboratoryGoogle Scholar
  16. Slonczewski JL, Fujisawa M, Dopson M, Krulwich TA (2009) Cytoplasmic pH measurement and homeostasis in bacteria and archaea. Adv Microb Physiol 55(1–79):317. doi: 10.1016/S0065-2911(09)05501-5 Google Scholar
  17. Soksawatmaekhin W, Kuraishi A, Sakata K, Kashiwagi K, Igarashi K (2004) Excretion and uptake of cadaverine by CadB and its physiological functions in Escherichia coli. Mol Microbiol 51:1401–1412. doi: 10.1046/j.1365-2958.2003.03913.x PubMedCrossRefGoogle Scholar
  18. Tucker D, Tucker N, Conway T (2002) Gene expression profiling of the pH response in Escherichia coli. J Bacteriol 184:6551–6558PubMedCrossRefGoogle Scholar
  19. Vogel HJ, Bonner DM (1956) Acetylornithinase of Escherichia coli: partial purification and some properties. J Biol Chem 218:97–106PubMedGoogle Scholar
  20. Zhang A, Altuvia S, Tiwari A, Argaman L, Hengge-Aronis R, Storz G (1998) The OxyS regulatory RNA represses rpoS translation and binds the Hfq (HF-I) protein. EMBO J 17:6061–6068. doi: 10.1093/emboj/17.20.6061 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Department of BiologyWabash CollegeCrawfordsvilleUSA

Personalised recommendations