Advertisement

Archives of Microbiology

, Volume 194, Issue 6, pp 493–504 | Cite as

Characterization of Edwardsiella tarda rpoN: roles in σ70 family regulation, growth, stress adaption and virulence toward fish

  • Keping WangEmail author
  • Enfu Liu
  • Shanshan Song
  • Xiaobo Wang
  • Yunxia Zhu
  • Jiang YeEmail author
  • Huizhan ZhangEmail author
Original Paper

Abstract

Edwardsiella tarda EIB202, a Gram-negative pathogen with strong virulence, is an opportunistic pathogen capable of causing edwardsiellosis with high mortality to fish. Alternative sigma factor 54 (RpoN) is an important regulator of virulence and stress resistance genes in many bacterial species and mainly responsible for transcription of genes in nitrogen utilization. In this study, the in-frame rpoN deletion mutant was constructed to analyze the function of RpoN in Edwardsiella tarda firstly. Compared to the wild-type and complemented strain rpoN +, the ΔrpoN was impaired in terms of the ability to survive under oxidative stress, osmotic stress and acid resistance, as well as the growth in Luria–Bertani medium, demonstrating essential roles of RpoN in stress resistance and nitrogen utilization. In addition, the ΔrpoN displayed markedly decreased biofilm formation and chondroitinase activity and was attenuated in virulence reflected in the increased median lethal dose value and extended infection cycle. Real-time polymerase chain reaction revealed that the expression levels of σ70 class changed in varying degrees in the rpoN mutant. Especially, the expression levels of rpoS and fliA were down-regulated 4.1-fold and 7.9-fold in stationary phase in comparison with the wild type, respectively. Furthermore, two differential expression genes, znuA and flhC, were detected in the wild type and ΔrpoN using the method of differential display reverse transcription PCR.

Keywords

Edwardsiella tarda rpoN Biofilm formation Virulence 

Notes

Acknowledgments

We thank Dr. Zhaolan Mo (Institute of Oceanology, Chinese Academy of Sciences, China) for kindly sending strains and plasmids used for the mutant construction in this study. This work was supported by the National Special Fund for State Key Laboratory of Bioreactor Engineering.

Supplementary material

203_2011_786_MOESM1_ESM.pdf (369 kb)
Supplementary material 1 (PDF 368 kb)

References

  1. Alexander DM, St John AC (1994) Characterization of the carbon starvation-inducible and stationary phase-inducible gene slp encoding an outer membrane lipoprotein in Escherichia coli. Mol Microbiol 11:1059–1071PubMedCrossRefGoogle Scholar
  2. Bauer D, Muller H, Reich J, Riedel H, Ahrenkiel V, Warthoe P, Strauss M (1993) Identification of differentially expressed mRNA species by an improved display technique (DDRT-PCR). Nucleic Acids Res 21:4272–4280PubMedCrossRefGoogle Scholar
  3. Bittner M, Saldias S, Estevez C, Zaldivar M, Marolda CL, Valvano MA, Contreras I (2002) O-antigen expression in Salmonella enterica serovar Typhi is regulated by nitrogen availability through RpoN-mediated transcriptional control of the rfaH gene. Microbiol-Sgm 148:3789–3799Google Scholar
  4. Buck M, Gallegos MT, Studholme DJ, Guo YL, Gralla JD (2000) The bacterial enhancer-dependent sigma(54) (sigma(N)) transcription factor. J Bacteriol 182:4129–4136PubMedCrossRefGoogle Scholar
  5. Burgess RR, Anthony L (2001) How sigma docks to RNA polymerase and what sigma does. Curr Opin Microbiol 4:126–131PubMedCrossRefGoogle Scholar
  6. Burgess RR, Zhao K, Liu MZ (2010) Promoter and regulon analysis of nitrogen assimilation factor, Sigma(54), reveal alternative strategy for E. coli MG1655 flagellar biosynthesis. Nucleic Acids Res 38:1273–1283PubMedCrossRefGoogle Scholar
  7. Chen JD, Lai SY, Huang SL (1996) Molecular cloning, characterization, and sequencing of the hemolysin gene from Edwardsiella tarda. Arch Microbiol 165:9–17PubMedCrossRefGoogle Scholar
  8. Djordjevic D, Wiedmann M, McLandsborough LA (2002) Microtiter plate assay for assessment of Listeria monocytogenes biofilm formation. Appl Environ Microbiol 68:2950–2958PubMedCrossRefGoogle Scholar
  9. Fang FC (2005) Sigma cascades in prokaryotic regulatory networks. Proc Natl Acad Sci USA 102:4933–4934PubMedCrossRefGoogle Scholar
  10. Farrell RE (2005) RNA methodologies: a laboratory guide for isolation and characterization, 3rd edn. Boston, AmsterdamGoogle Scholar
  11. Fernandez AI, Perez MJ, Rodriguez LA, Nieto TP (1995) Surface phenotypic characteristics and virulence of Spanish isolates of Aeromonas salmonicida after passage through fish. Appl Environ Microbiol 61:2010–2012PubMedGoogle Scholar
  12. Gorden J, Small PL (1993) Acid resistance in enteric bacteria. Infect Immun 61:364–367PubMedGoogle Scholar
  13. Gruber TM, Gross CA (2003) Multiple sigma subunits and the partitioning of bacterial transcription space. Annu Rev Microbiol 57:441–466PubMedCrossRefGoogle Scholar
  14. Hancock REW, Powers JPS (2003) The relationship between peptide structure and antibacterial activity. Peptides 24:1681–1691PubMedCrossRefGoogle Scholar
  15. Hellemans J, Bustin SA, Benes V, Garson JA, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611–622PubMedCrossRefGoogle Scholar
  16. Helmann JD, Chamberlin MJ (1988) Structure and function of bacterial sigma factors. Annu Rev Biochem 57:839–872PubMedCrossRefGoogle Scholar
  17. Hunt TP, Magasanik B (1985) Transcription of glnA by purified Escherichia coli components: core RNA polymerase and the products of glnF, glnG, and glnL. Proc Natl Acad Sci USA 82:8453–8457PubMedCrossRefGoogle Scholar
  18. Ishihama A (2000) Functional modulation of Escherichia coli RNA polymerase. Annu Rev Microbiol 54:499–518PubMedCrossRefGoogle Scholar
  19. Jones DH, Franklin FC, Thomas CM (1994) Molecular analysis of the operon which encodes the RNA polymerase sigma factor sigma 54 of Escherichia coli. Microbiol 140(Pt 5):1035–1043Google Scholar
  20. Lan MZ, Peng X, Xiang MY, Xia ZY, Bo W, He L, Li XY, Jun ZP (2007) Construction and characterization of a live, attenuated esrB mutant of Edwardsiella tarda and its potential as a vaccine against the haemorrhagic septicaemia in turbot, Scophthamus maximus (L.). Fish Shellfish Immun 23:521–530CrossRefGoogle Scholar
  21. Leang C, Krushkal J, Ueki T, Puljic M, Sun J, Juarez K, Nunez C, Reguera G, DiDonato R, Postier B, Adkins RM, Lovley DR (2009) Genome-wide analysis of the RpoN regulon in Geobacter sulfurreducens. Bmc Genomics. doi: 10.1186/1471-2164-10-331 PubMedGoogle Scholar
  22. Leung KY, Zheng J (2007) Dissection of a type VI secretion system in Edwardsiella tarda. Mol Microbiol 66:1192–1206PubMedCrossRefGoogle Scholar
  23. Leung KY, Tan YP, Lin Q, Wang XH, Joshi S, Hew CL (2002) Comparative proteomic analysis of extracellular proteins of Edwardsiella tarda. Infect Immun 70:6475–6480PubMedCrossRefGoogle Scholar
  24. Leung KY, Tan YP, Zheng J, Tung SL, Rosenshine I (2005) Role of type III secretion in Edwardsiella tarda virulence. Microbiol-Sgm 151:2301–2313CrossRefGoogle Scholar
  25. Leung KY, Siame BA, Snowball H, Mok YK (2011) Type VI secretion regulation: crosstalk and intracellular communication. Curr Opin Microbiol 14:9–15PubMedCrossRefGoogle Scholar
  26. Liu Q, Xu LL, Wang QY, Xiao JF, Wang X, Chen T, Zhang YX (2010) Characterization of Edwardsiella tarda waaL: roles in lipopolysaccharide biosynthesis, stress adaptation, and virulence toward fish. Arch Microbiol 192:1039–1047PubMedCrossRefGoogle Scholar
  27. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408PubMedCrossRefGoogle Scholar
  28. Mathew JA, Tan YP, Srinivasa Rao PS, Lim TM, Leung KY (2001) Edwardsiella tarda mutants defective in siderophore production, motility, serum resistance and catalase activity. Microbiol 147:449–457Google Scholar
  29. Matsuyama T, Kamaishi T, Ooseko N, Kurohara K, Iida T (2005) Pathogenicity of motile and non-motile Edwardsiella tarda to some marine fish. Fish Pathol 40:133–135CrossRefGoogle Scholar
  30. Matz C, Moreno AM, Alhede M, Manefield M, Hauser AR, Givskov M, Kjelleberg S (2008) Pseudomonas aeruginosa uses type III secretion system to kill biofilm-associated amoebae. ISME J 2:843–852PubMedCrossRefGoogle Scholar
  31. Menon RS, Chang YF, St Clair J, Ham RG (1991) RT–PCR artifacts from processed pseudogenes. PCR Methods Appl 1:70–71PubMedGoogle Scholar
  32. Merrick MJ, Coppard JR (1989) Mutations in genes downstream of the rpoN gene (encoding sigma 54) of Klebsiella pneumoniae affect expression from sigma 54-dependent promoters. Mol Microbiol 3:1765–1775PubMedCrossRefGoogle Scholar
  33. Merrick MJ, Stewart WDP (1985) Studies on the regulation and function of the Klebsiella pneumoniae ntrA gene. Gene 35:297–303PubMedCrossRefGoogle Scholar
  34. Norgard MV, Smith AH, Blevins JS, Bachlani GN, Yang XF (2007) Evidence that RpoS (sigma(S)) in Borrelia burgdorferi is controlled directly by RpoN (sigma(54)/sigma(N)). J Bacteriol 189:2139–2144PubMedCrossRefGoogle Scholar
  35. Ouyang ZM, Deka RK, Norgard MV (2011) BosR (BB0647) controls the RpoN-RpoS regulatory pathway and virulence expression in Borrelia burgdorferi by a Novel DNA-binding mechanism. Plos Pathog. doi: 10.1371/journal.ppat.1001272 Google Scholar
  36. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res 29:2003–2007CrossRefGoogle Scholar
  37. Price GP, St John AC (2000) Purification and analysis of expression of the stationary phase-inducible slp lipoprotein in Escherichia coli: role of the Mar system. FEMS Microbiol Lett 193:51–56PubMedCrossRefGoogle Scholar
  38. Reitzer L, Schneider BL (2001) Metabolic context and possible physiological themes of sigma(54)-dependent genes in Escherichia coli. Microbiol Mol Biol R 65:422–444CrossRefGoogle Scholar
  39. Riordan JT, Tietjen JA, Walsh CW, Gustafson JE, Whittam TS (2010) Inactivation of alternative sigma factor 54 (RpoN) leads to increased acid resistance, and alters locus of enterocyte effacement (LEE) expression in Escherichia coli O157: H7. Microbiol-Sgm 156:719–730CrossRefGoogle Scholar
  40. Rubires X, Saigi F, Pique N, Climent N, Merino S, Alberti S, Tomas JM, Regue M (1997) A gene (wbbL) from Serratia marcescens N28b (O4) complements the rfb-50 mutation of Escherichia coli K-12 derivatives. J Bacteriol 179:7581–7586PubMedGoogle Scholar
  41. Sambrook J, Russell DW (2006) The condensed protocols from molecular cloning: a laboratory manual. Cold Spring Harbor, New YorkGoogle Scholar
  42. Schellhorn H, Dong T, Yu R (2011) Antagonistic regulation of motility and transcriptome expression by RpoN and RpoS in Escherichia coli. Mol Microbiol 79:375–386PubMedCrossRefGoogle Scholar
  43. Slaven EM, Lopez FA, Hart SM, Sanders CV (2001) Myonecrosis caused by Edwardsiella tarda: a case report and case series of extraintestinal E. tarda infections. Clin Infect Dis 32:1430–1433PubMedCrossRefGoogle Scholar
  44. Sommer P, Martin-Rouas C, Mettler E (1999) Influence of the adherent population level on biofilm population, structure and resistance to chlorination. Food Microbiol 16:503–515CrossRefGoogle Scholar
  45. Soncini FC, Barchiesi J, Espariz M, Checa SK (2009) Downregulation of RpoN-controlled genes protects Salmonella cells from killing by the cationic antimicrobial peptide polymyxin B. FEMS Microbiol Lett 291:73–79PubMedCrossRefGoogle Scholar
  46. Srinivasa Rao PS, Yamada Y, Leung KY (2003) A major catalase (KatB) that is required for resistance to H2O2 and phagocyte-mediated killing in Edwardsiella tarda. Microbiol 149:2635–2644CrossRefGoogle Scholar
  47. Sun L, Zhang M, Sun K (2008) Regulation of autoinducer 2 production and luxS expression in a pathogenic Edwardsiella tarda strain. Microbiol-Sgm 154:2060–2069CrossRefGoogle Scholar
  48. Sun L, Cheng S, Hu YH, Zhang M (2010a) Analysis of the vaccine potential of a natural avirulent Edwardsiella tarda isolate. Vaccine 28:2716–2721PubMedCrossRefGoogle Scholar
  49. Sun L, Hu YH, Dang W, Liu CS (2010b) Analysis of the effect of copper on the virulence of a pathogenic Edwardsiella tarda strain. Lett Appl Microbiol 50:97–103PubMedCrossRefGoogle Scholar
  50. van Heeswijk WC, Hoving S, Molenaar D, Stegeman B, Kahn D, Westerhoff HV (1996) An alternative PII protein in the regulation of glutamine synthetase in Escherichia coli. Mol Microbiol 21:133–146PubMedCrossRefGoogle Scholar
  51. Wakimoto N, Nishi J, Sheikh J, Nataro JP, Sarantuya J, Iwashita M, Manago K, Tokuda K, Yoshinaga M, Kawano Y (2004) Quantitative biofilm assay using a microtiter plate to screen for enteroaggregative Escherichia coli. Am J Trop Med Hyg 71:687–690PubMedGoogle Scholar
  52. Waltman WD, Shotts EB, Hsu TC (1986) Biochemical characteristics of Edwardsiella ictaluri. Appl Environ Microbiol 51:101–104PubMedGoogle Scholar
  53. Wang GH, Barton C, Rodgers FG (2002) Bacterial DNA decontamination for reverse transcription polymerase chain reaction (RT–PCR). J Microbiol Meth 51:119–121CrossRefGoogle Scholar
  54. Wang QY, Xiao JF, Liu Q, Xu LL, Wang X, Wu HZ, Zhang YX (2009) Characterization of Edwardsiella tarda rpoS: effect on serum resistance, chondroitinase activity, biofilm formation, and autoinducer synthetases expression. Appl Microbiol Biot 83:151–160CrossRefGoogle Scholar
  55. Xu HJ, Caimano MJ, Lin T, He M, Radolf JD, Norris SJ, Gheradini F, Wolfe AJ, Yang XF (2010) Role of acetyl-phosphate in activation of the Rrp2-RpoN-RpoS Pathway in Borrelia burgdorferi. Plos Pathog. doi: 10.1371/journal.ppat.1001104 Google Scholar
  56. Yang TC, Leu YW, Chang-Chien HC, Hu RM (2009) Flagellar biogenesis of Xanthomonas campestris requires the alternative sigma factors RpoN2 and FliA and is temporally regulated by FlhA, FlhB, and FlgM. J Bacteriol 191:2266–2275PubMedCrossRefGoogle Scholar
  57. Zhang Y, Pohlmann EL, Ludden PW, Roberts GP (2001) Functional characterization of three GlnB homologs in the photosynthetic bacterium Rhodospirillum rubrum: roles in sensing ammonium and energy status. J Bacteriol 183:6159–6168PubMedCrossRefGoogle Scholar
  58. Zhang YX, Tian Y, Wang QY, Liu Q, Ma Y, Cao XD (2008a) Role of RpoS in stress survival, synthesis of extracellular autoinducer 2, and virulence in Vibrio alginolyticus. Arch Microbiol 190:585–594PubMedCrossRefGoogle Scholar
  59. Zhang YX, Xiao JF, Wang QY, Liu Q, Wang X, Liu HA (2008b) Isolation and identification of fish pathogen Edwardsiella tarda from mariculture in China. Aquac Res 40:13–17CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.State Key Laboratory of Bioreactor EngineeringEast China University of Science and TechnologyShanghaiPeople’s Republic of China

Personalised recommendations