Advertisement

Archives of Microbiology

, Volume 194, Issue 5, pp 315–322 | Cite as

Characterization of Deinococcus sahariens sp. nov., a radiation-resistant bacterium isolated from a Saharan hot spring

  • Hanene Bouraoui
  • Melek Ben Aissa
  • Feten Abbassi
  • Jean Pierre Touzel
  • Michael O’donohue
  • Mohamed Manai
Original Paper

Abstract

An ultraviolet-radiation-resistant, Gram-positive, orange-pigmented, thermophilic and strictly aerobic cocci was isolated from Saharan water hot spring in Tunisia. The newly isolated bacterium, designated HAN-23T, was identified based on polyphasic taxonomy including genotypic, phenotypic and chemotaxonomic characterization. Phylogenetic analysis based on 16S rRNA gene sequences placed this strain within Deinococcus genus. However, strain HAN-23T is different from recognized species of the genus Deinococcus, showing less than 94.0% similarity values to its closest relatives. The predominant cellular fatty acids determined by gas chromatography were iso-C15:0, iso-C17:0 and iso C17:1 ω9c. The major respiratory quinone was MK-8. The DNA G + C content was 66.9 mol%. DNA–DNA hybridization measurements revealed low DNA relatedness (6%) between the novel isolate and its closest neighbor, the type strain Deinococcus geothermalis DSM 11300. On the basis of the phenotypic, chemotaxonomic and phylogenetic data, strain HAN-23T represents a novel species of the genus Deinococcus, for which the name Deinococcus sahariens sp. nov. is proposed, the type strain being HAN-23T (=DSM 18496T; LMG 23756T).

Keywords

Taxonomy New species Sahara Hot spring Deinococcus UV resistance 

Notes

Acknowledgments

This work was supported by the Ministry of Higher Education and Scientific Research in Tunisia and the French Tunisian Mixed Committee of University Cooperation (CMCU Projects).

Supplementary material

203_2011_762_MOESM1_ESM.docx (920 kb)
Supplementary material 1 (DOCX 920 kb)

References

  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410PubMedGoogle Scholar
  2. Arrage AA, Phelps TJ, Benoit RE, Palumbo AV, White DC (1993) Bacterial sensitivity to UV light as a model for ionizing radiation resistance. J Microbiol Methods 18:27–136Google Scholar
  3. Asker D, Awad TS, Beppu T, Ueda K (2008) Deinococcus misasensis and Deinococcus roseus, novel members of the genus Deinococcus, isolated from a radioactive site in Japan. Syst Appl Microbiol 31:43–49PubMedCrossRefGoogle Scholar
  4. Baker GC, Smith JJ, Cowan DA (2003) Review and re-analysis of domain-specific 16S primers. J Microbiol Methods 55:541–555PubMedCrossRefGoogle Scholar
  5. Blasius M, Hubscher U, Sommer S (2008) Deinococcus radiodurans: what belongs to the survival kit? Critical reviews. Biochem Mol Biol 43:285CrossRefGoogle Scholar
  6. Brooks BW, Murray RGE (1981) Nomenclature for “Micrococcus radiodurans” and other radiation-resistant cocci: Deinococcaceae fam. nov. and Deinococcus gen. nov., including five species. Int J Syst Bacteriol 31:353–360Google Scholar
  7. Brosius J, Dull TJ, Sleeter DD, Noller HF (1981) Gene organisation and primary structure of a ribosomal RNA operon from Escherichia coli. J Mol Biol 148:107–127PubMedCrossRefGoogle Scholar
  8. Callegan RP, Nobre MF, McTernan PM, Battista JR, Navarro-Gonzalez R, McKay CP, Da Costa MS, Rainey FA (2008) Description of four novel psychrophilic, ionizing radiation-sensitive Deinococcus species from alpine environments. Int J Syst Evol Microbiol 58:1252–1258PubMedCrossRefGoogle Scholar
  9. Cashion P, Hodler MA, McCuIIy J, Franklin M (1977) A rapid method for base ratio determination of bacterial DNA. Anal Biochem 81:461–466Google Scholar
  10. Chanal A, Chapon V, Benzerara K, Barakat M, Christen R, Achouak W, Barras F, Heulin T (2006) The desert of Tataouine: an extreme environment that hosts a wide diversity of microorganisms and radiotolerant bacteria. Environ Microbiol 8:514–525PubMedCrossRefGoogle Scholar
  11. Cox MM, Battista JR (2005) Deinococcus radiodurans—the consummate survivor. Nat Rev Microbiol 3:882–892PubMedCrossRefGoogle Scholar
  12. Daly MJ (2009) A new perspective on radiation resistance based on Deinococcus radiodurans. Nat Rev Microbiol 7:237–245PubMedCrossRefGoogle Scholar
  13. Daly MJ, Gaidamakova EK, Matrosova VY, Vasilenko A, Zhai M, Venkateswaran A, Hess M, Omelchenko MV, Kostandarithes HM, Makarova KS, Wackett LP, Fredrickson JK, Ghosal D (2004) Accumulation of Mn(II) in Deinococcus radiodurans facilitates gamma-radiation resistance. Science 306:1025–1028PubMedCrossRefGoogle Scholar
  14. De Groot A, Chapon V, Servant P, Christen R, Fischer-Le Saux M, Sommer S, Heulin T (2005) Deinococcus deserti sp nov., a gamma-radiation-tolerant bacterium isolated from the Sahara Desert. Int J Syst Evol Microbiol 55:2441–2446PubMedCrossRefGoogle Scholar
  15. De Ley J, Cattoir H, Reynaerts A (1970) The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142PubMedCrossRefGoogle Scholar
  16. Edwards JS, Battista JR (2003) Using DNA microarray data to understand the ionizing radiation resistance of Deinococcus radiodurans. Trends Biotechnol 21:381–382PubMedCrossRefGoogle Scholar
  17. Embley TM, O’Donnell AG, Wait R, Rostron J (1987) Lipid and cell wall amino acid composition in the classification of members of the genus Deinococcus. Syst Appl Microbiol 10:20–27CrossRefGoogle Scholar
  18. Ezeji TC, Wolf A, Bahl H (2005) Isolation, characterization and identification of Geobacillus thermodenitrificans HRO10, an alpha-amylase and alpha-glucosidase producing thermophile. Can J Microbiol 51:685–693PubMedCrossRefGoogle Scholar
  19. Fardeau ML, Olivier B, Patel BKC, Magot M, Thomas P, Rimbault A, Rocchiccioli F, Garcia JL (1997) Thermotoga hypogea sp. nov., a xylanolytic, thermophilic bacterium from an oil-producing well. Int J Syst Bacteriol 47:1013–1019PubMedCrossRefGoogle Scholar
  20. Felsenstein J (1989) PHYLIP—phylogeny inference package (version 3.2). Cladistics 5:164–166Google Scholar
  21. Ferreira AC, Nobre MF, Rainey FA, Silva MT, Wait R, Burghardt J, Chung AP, Da Costa MS (1997) Deinococcus geothermalis sp. nov. and Deinococcus murrayi sp. nov., two extremely radiation-resistant and slightly thermophilic species from hot springs. Int J Syst Bacteriol 47:939–947Google Scholar
  22. Haouari O, Fardeau ML, Cayol JL, Fauque G, Casiot C, Elbaz-Poulichet F, Hamdi M, Ollivier B (2008) Thermodesulfovibrio hydrogeniphilus sp nov., a new thermophilic sulphate-reducing bacterium isolated from a Tunisian hot spring. Syst Appl Microbiol 31:38–42PubMedCrossRefGoogle Scholar
  23. Huss VA, Festl H, Schleifer KH (1983) Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192Google Scholar
  24. Lai WA, Kämpfer P, Arun AB, Shen FT, Huber B, Rekha PD, Young CC (2006) Deinococcus ficus sp. nov., isolated from the rhizosphere of Ficus religiosa. Int J Syst Evol Microbiol 56:787–791PubMedCrossRefGoogle Scholar
  25. Makarova KS, Omelchenko MV, Gaidamakova EK, Matrosova VY, Vasilenko A, Zhai M (2007) Deinococcus geothermalis: the pool of extreme radiation resistance genes shrinks. PLoS ONE 2:e955PubMedCrossRefGoogle Scholar
  26. Mesbah M, Premachandran U, Whitman W (1989) Precise measurement of the G + C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167CrossRefGoogle Scholar
  27. Narumi I (2003) Unlocking radiation resistance mechanisms: still a long way to go. Trends Microbiol 11:422–425PubMedCrossRefGoogle Scholar
  28. Peng F, Zhang L, Luo X, Dai J, An H, Tang Y, Chengxiang F (2009) Deinococcus xinjiangensis sp. nov., isolated from desert soil. Int J Syst Evol Microbiol 59:709–713PubMedCrossRefGoogle Scholar
  29. Rainey FA, Ray K, Ferreira M, Gatz BZ, Nobre MF, Bagaley D, Rash BA, Park MJ, Earl AM, Shank NC, Small AM, Henk MC, Battista JR, Kämpfer P, Da Costa MS (2005) Extensive diversity of ionizing-radiation-resistant bacteria recovered from Sonoran Desert soil and description of nine new species of the genus Deinococcus obtained from a single soil sample. Appl Environ Microbiol 71:5225–5235PubMedCrossRefGoogle Scholar
  30. Rainey FA, Ferreira M, Nobre MF, Ray K, Bagaley D, Earl AM, Battista JR, Gomez-Silva B, McKay CP, Da Costa MS (2007) Deinococcus peraridilitoris sp. nov., isolated from a coastal desert. Int J Syst Evol Microbiol 57:1408–1412PubMedCrossRefGoogle Scholar
  31. Sambrook JE, Fritsch F, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  32. Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newslett 20:1–6Google Scholar
  33. Schleifer KH (1985) Analysis of the chemical composition and primary structure of murein. Methods Microbiol 18:123–156CrossRefGoogle Scholar
  34. Schleifer KH, Kandler O (1972) Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477PubMedGoogle Scholar
  35. Shashidharand R, Bandekar JR (2009) Deinococcus piscis sp. nov., a radiation-resistant bacterium isolated from a marine fish. Int J Syst Evol Microbiol 59:2714–2717CrossRefGoogle Scholar
  36. Shimada H, Shida Y, Nemoto N, Oshima T, Yamagishi A (2001) Quinone profiles of Thermoplasma acidophilum HO-62. Bacteriology 183:1462–1465CrossRefGoogle Scholar
  37. Smibert RM, Krieg NR (1994) Phenotypic characterization. In: Methods for general and molecular bacteriology, American society for microbiology, Washington, DCGoogle Scholar
  38. Suresh K, Reddy GSN, Sengupta S, Shivaji S (2004) Deinococcus indicus sp nov., an arsenic-resistant bacterium from an aquifer in West Bengal, India. Int J Syst Evol Microbiol 54:457–461PubMedCrossRefGoogle Scholar
  39. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl Acids Res 22:4673–4680PubMedCrossRefGoogle Scholar
  40. Touzel JP, O’Donohue M, Debeire P, Samain E, Breton C (2000) Thermobacillus xylanilyticus gen. nov., sp nov., a new aerobic thermophilic xylan-degrading bacterium isolated from farm soil. Int J Syst Evol Microbiol 50:315–320PubMedCrossRefGoogle Scholar
  41. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE, Stackebrandt E, Starr MP, Trüper HG (1987) Report of the ad-hoccommittee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464CrossRefGoogle Scholar
  42. Yang Y, Itoh T, Yokobori S, Itahashi S, Shimada H, Satoh K, Ohba H, Narumi I, Yamagishi A (2009) Deinococcus aerius sp. nov., isolated from the high atmosphere. Int J Syst Evol Microbiol 59:1862–1866PubMedCrossRefGoogle Scholar
  43. Yang Y, Takashi I, Yokobori SI, Shimada I, Itahashi HS, Satoh K, Ohba H, Narumi I, Yamagishi A (2010) Deinococcus aetherius sp. nov., isolated from the stratosphere. Int J Syst Evol Microbiol 60:776–779PubMedCrossRefGoogle Scholar
  44. Yeon HW, Yong BK, Schumann P, Son JA, Jang J, Go SJ, Kwon SW (2007) Deinococcus cellulosilyticus sp. nov., isolated from air. Int J Syst Evol Microbiol 57:1685–1688CrossRefGoogle Scholar
  45. Yoo SH, Weon YH, Kim SJ, Kim YS, Kim BY, Kwon SW (2010) Deinococcus aerolatus sp. nov. and Deinococcus aerophilus sp. nov., isolated from air samples. Int J Syst Evol Microbiol 60:1191–1195PubMedCrossRefGoogle Scholar
  46. Yuan M, Zhang W, Dai S, Wu J, Wang Y, Tao T, Chen M, Lin M (2009) Deinococcus gobiensis sp. nov., an extremely radiation-resistant bacterium. Int J Syst Evol Microbiol 59:1513–1517PubMedCrossRefGoogle Scholar
  47. Zeikus JG, Wolfe RS (1972) Methanobacterium thermoautotrophicus sp. n., an anaerobic, autotrophic extreme thermophile. J Bacteriol 109:707–713PubMedGoogle Scholar
  48. Zhang YQ, Sun CH, Li WJ, Yu LY, Zhou JQ, Xu LH, Jiang CL (2007) Deinococcus yunweiensis sp. nov., a gamma and UV-radiation-resistant bacterium from China. Int J Syst Evol Microbiol 57:370–375PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Hanene Bouraoui
    • 1
  • Melek Ben Aissa
    • 1
  • Feten Abbassi
    • 2
  • Jean Pierre Touzel
    • 3
  • Michael O’donohue
    • 4
  • Mohamed Manai
    • 1
  1. 1.Unité de Biochimie et Biologie MoléculaireUniversité de Tunis El ManarTunisTunisia
  2. 2.Peptidome de la Peau des Amphibiens FRE 2852- UPMC/CNRSUniversité Pierre et Marie CurieParisFrance
  3. 3.INRA, UMR FARE-URCA 614ReimsFrance
  4. 4.Université de Toulouse, INSA, LISBPToulouseFrance

Personalised recommendations