Advertisement

Archives of Microbiology

, 193:693 | Cite as

Genomics of iron acquisition in the plant pathogen Erwinia amylovora: insights in the biosynthetic pathway of the siderophore desferrioxamine E

  • Theo H. M. Smits
  • Brion Duffy
Mini-Review

Abstract

Genomics has clarified the biosynthetic pathway for desferrioxamine E critical for iron acquisition in the enterobacterial fire blight pathogen Erwinia amylovora. Evidence for each of the individual steps and the role of desferrioxamine E biosynthesis in pathogen virulence and cell protection from host defenses is presented. Using comparative genomics, it can be concluded that desferrioxamine biosynthesis is ancestral within the genera Erwinia and Pantoea.

Keywords

Fire blight Desferrioxamine Ferrioxamine Siderophore biosynthesis 

Notes

Acknowledgments

We thank Dr. Cosima Pelludat (ACW) for insightful discussion during preparation of this review. Funding was provided in part by the Swiss Secretariat for Education and Research (SBF C07.0038) and the Swiss Federal Office for Agriculture (BLW Fire Blight Research—Pathogen). This work was conducted within the Swiss ProfiCrops program and the European Science Foundation research network COST Action 864.

References

  1. Adams AS, Currie CR, Cardoza Y, Klepzig KD, Raffa KF (2009) Effects of symbiotic bacteria and tree chemistry on the growth and reproduction of bark beetle fungal symbionts. Can J For Res 39:1133–1147CrossRefGoogle Scholar
  2. Barona-Gómez F, Wong U, Giannakopulos AE, Derrick PJ, Challis GL (2004) Identification of a cluster of genes that directs desferrioxamine biosynthesis in Streptomyces coelicolor M145. J Am Chem Soc 126:16282–16283PubMedCrossRefGoogle Scholar
  3. Bentley SD, Chater KF, Cerdeño-Tárraga AM, Challis GL, Thomson NR, James KD, Harris DE, Quail MA, Kieser H, Harper D, Bateman A, Brown S, Chandra G, Chen CW, Collins M, Cronin A, Fraser A, Goble A, Hidalgo J, Hornsby T, Howarth S, Huang C-H, Kieser T, Larke L, Murphy L, Oliver K, O’Neil S, Rabbinowitsch E, Rajandream M-A, Rutherford K, Rutter S, Seeger K, Saunders D, Sharp S, Squares R, Squares S, Taylor K, Warren T, Wietzorrek A, Woodward J, Barrell BG, Parkhill J, Hopwood DA (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417:141–147PubMedCrossRefGoogle Scholar
  4. Berner I, Konetschny-Rapp S, Jung G, Winkelmann G (1988) Characterization of ferrioxamine E as the principle siderophore of Erwinia herbicola (Enterobacter agglomerans). Biol Met 1:51–56PubMedCrossRefGoogle Scholar
  5. Bonn WG, van der Zwet T (2000) Distribution and economic importance of fire blight. In: Vanneste JL (ed) Fire blight: the disease and its causative agent, Erwinia amylovora. CAB International, Wallingford, pp 37–53CrossRefGoogle Scholar
  6. Brady CL, Venter SN, Cleenwerck I, Engelbeen K, Vancanneyt M, Swings J, Coutinho TA (2009) Pantoea vagans sp. nov., Pantoea eucalypti sp. nov., Pantoea deleyi sp. nov. and Pantoea anthophila sp. nov. Int J Syst Evol Microbiol 59:2339–2345PubMedCrossRefGoogle Scholar
  7. Brickman TJ, Armstrong SK (2005) Bordetella AlcS transporter functions in alcaligin siderophore export and is central to inducer sensing in positive regulation of alcaligin system gene expression. J Bacteriol 187:3650–3661PubMedCrossRefGoogle Scholar
  8. Challis GL (2005) A widely distributed bacterial pathway for siderophore biosynthesis independent of nonribosomal peptide synthetases. ChemBioChem 6:601–611PubMedCrossRefGoogle Scholar
  9. de Lorenzo V, Wee S, Herrero M, Neilands JB (1987) Operator sequences of the aerobactin operon of plasmid ColV-K30: binding of the ferric uptake regulation (fur) repressor. J Bacteriol 169:2624–2630PubMedGoogle Scholar
  10. De Maayer P, Chan WY, Venter SN, Toth IK, Birch PRJ, Joubert F, Coutinho TA (2010) The genome sequence of Pantoea ananatis LMG20103, the causative agent of Eucalyptus blight and dieback. J Bacteriol 192:2936–2937PubMedCrossRefGoogle Scholar
  11. Deiss K, Hantke K, Winkelmann G (1998) Molecular recognition of siderophores: a study with cloned ferrioxamine receptors (FoxA) from Erwinia herbicola and Yersinia enterocolitica. Biometals 11:131–137PubMedCrossRefGoogle Scholar
  12. Dellagi A, Brisset M-N, Paulin J-P, Expert D (1998) Dual role of desferrioxamine in Erwinia amylovora pathogenicity. Mol Plant-Microbe Interact 11:734–742PubMedCrossRefGoogle Scholar
  13. Duffy B, Schärer H-J, Bünter M, Klay A, Holliger E (2005) Regulatory measures against Erwinia amylovora in Switzerland. EPPO Bull 35:239–244CrossRefGoogle Scholar
  14. Ewing WH, Fife MA (1972) Enterobacter agglomerans (Beijerinck) comb. nov. (the Herbicola-Lathyri bacteria). Int J Syst Bacteriol 22:4–11CrossRefGoogle Scholar
  15. Expert D (1999) Withholding and exchanging iron: interactions between Erwinia spp. and their host plants. Annu Rev Phytopathol 37:307–334PubMedCrossRefGoogle Scholar
  16. Expert D, Dellagi A, Kachadourian R (2000) Iron and fire blight: role in pathogenicity of desferrioxamine E, the main siderophore of Erwinia amylovora. In: Vanneste JL (ed) Fire blight: the disease and its causative agent, Erwinia amylovora. CAB International, Wallingford, pp 179–195CrossRefGoogle Scholar
  17. Feistner GJ (1995) Proferrioxamine synthesis in Erwinia amylovora in response to precursor or hydroxylysine feeding: metabolic profiling with liquid chromatography-electrospray mass spectrometry. Biometals 8:318–327PubMedGoogle Scholar
  18. Feistner GJ, Ishimaru C (1996) Proferrioxamine profiles of Erwinia herbicola and related bacteria. Biometals 9:337–344CrossRefGoogle Scholar
  19. Feistner GJ, Stahl DC, Gabrik AH (1993) Proferrioxamine siderophores of Erwinia amylovora. A capillary liquid chromatographic/electrospray tandem mass spectrometry study. Org Mass Spectrom 28:163–175CrossRefGoogle Scholar
  20. Gavini F, Mergaert J, Beji A, Mielcarek C, Izard D, Kersters K, De Ley J (1989) Transfer of Enterobacter agglomerans (Beijerinck 1888) Ewing and Fife 1972 to Pantoea gen. nov. as Pantoea agglomerans comb. nov. and description of Pantoea dispersa sp. nov. Int J Syst Bacteriol 39:337–345CrossRefGoogle Scholar
  21. Hantke K (1981) Regulation of ferric iron transport in Escherichia coli K12: isolation of a constitutive mutant. Mol Gen Genet 182:288–292PubMedCrossRefGoogle Scholar
  22. Hauben L, Swings J (2005) Genus XIII. Erwinia. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology. 2nd edn, Vol 2: The Proteobacteria, part B: the Gammaproteobacteria. Springer, New York, pp 670–679Google Scholar
  23. Kachadourian R, Dellagi A, Laurent J, Bricard L, Kunesch G, Expert D (1996) Desferrioxamine-dependent iron transport in Erwinia amylovora CFBP 1430: cloning of the gene encoding the ferrioxamine receptor FoxR. Biometals 9:143–150PubMedCrossRefGoogle Scholar
  24. Köster W (1991) Iron(III) hydroxamate transport across the cytoplasmic membrane of Escherichia coli. Biol Met 4:23–32PubMedCrossRefGoogle Scholar
  25. Kube M, Migdoll AM, Müller I, Kuhl H, Beck A, Reinhardt R, Geider K (2008) The genome of Erwinia tasmaniensis strain Et1/99, a non-pathogenic bacterium in the genus Erwinia. Environ Microbiol 10:2211–2222PubMedCrossRefGoogle Scholar
  26. Kube M, Migdoll AM, Gehring I, Heitmann K, Mayer Y, Kuhl H, Knaust F, Geider K, Reinhardt R (2010) Genome comparison of the epiphytic bacteria Erwinia billingiae and E. tasmaniensis with the pear pathogen E. pyrifoliae. BMC Genomics 11:393PubMedCrossRefGoogle Scholar
  27. Meyer J-M, Abdallah M (1980) The siderochromes of non-fluorescent pseudomonads: production of nocardamine by Pseudomonas stutzeri. J Gen Microbiol 118:125–129Google Scholar
  28. Møller V (1955) Simplified test for some amino acid decarboxylases and arginine dihydrolase system. Acta Pathol Microbiol Scand 36:158–172PubMedCrossRefGoogle Scholar
  29. Oh C-S, Beer SV (2005) Molecular genetics of Erwinia amylovora involved in the development of fire blight. FEMS Microbiol Lett 253:185–192PubMedCrossRefGoogle Scholar
  30. Park DH, Thapa SP, Choi B-S, Kim W-S, Hur JH, Cho JM, Lim J-S, Choi I-Y, Lim CK (2011) Complete genome sequence of Japanese Erwinia strain Ejp617, a bacterial shoot blight pathogen of pear. J Bacteriol 193:586–587PubMedCrossRefGoogle Scholar
  31. Pinto-Tomás AA, Anderson MA, Suen G, Stevenson DM, Chu FST, Cleland WW, Weimer PJ, Currie CR (2009) Symbiotic nitrogen fixation in the fungus gardens of leaf-cutter ants. Science 326:1120–1123PubMedCrossRefGoogle Scholar
  32. Powney R, Smits THM, Sawbridge T, Frey B, Blom J, Frey JE, Plummer KM, Beer SV, Luck J, Duffy B, Rodoni B (2011) Genome sequence of an Erwinia amylovora strain with restricted pathogenicity to Rubus plants. J Bacteriol 193:785–786PubMedCrossRefGoogle Scholar
  33. Reissbrodt R, Rabsch W, Chapeaurouge A, Jung G, Winkelmann G (1990) Isolation and identification of ferrioxamine G and E in Hafnia alvei. Biol Met 3:54–60CrossRefGoogle Scholar
  34. Rezzonico F, Smits THM, Montesinos E, Frey JE, Duffy B (2009) Genotypic comparison of Pantoea agglomerans plant and clinical strains. BMC Microbiol 9:204PubMedCrossRefGoogle Scholar
  35. Rezzonico F, Vogel G, Duffy B, Tonolla M (2010) Whole cell MALDI-TOF mass spectrometry application for rapid identification and clustering analysis of Pantoea species. Appl Environ Microbiol 76:4497–4509PubMedCrossRefGoogle Scholar
  36. Rezzonico F, Smits THM, Duffy B (2011) Diversity and functionality of CRISPR regions in fire blight pathogen Erwinia amylovora. Appl Environ Microbiol 77:3819–3829PubMedCrossRefGoogle Scholar
  37. Schupp T, Waldmeier U, Divers M (1987) Biosynthesis of desferrioxamine B in Streptomyces pilosus: evidence for the involvement of lysine decarboxylase. FEMS Microbiol Lett 42:135–139CrossRefGoogle Scholar
  38. Schupp T, Toupet C, Divers M (1988) Cloning and expression of two genes of Streptomyces pilosus involved in the biosynthesis of the siderophore desferrioxamine B. Gene 64:179–188PubMedCrossRefGoogle Scholar
  39. Sebaihia M, Bocsanczy AM, Biehl BS, Quail MA, Perna NT, Glasner JD, DeClerck GA, Cartinhour S, Schneider DJ, Bentley SD, Parkhill J, Beer SV (2010) Complete genome sequence of the plant pathogen Erwinia amylovora strain ATCC 49946. J Bacteriol 192:2020–2021PubMedCrossRefGoogle Scholar
  40. Smits THM, Jaenicke S, Rezzonico F, Kamber T, Goesmann A, Frey JE, Duffy B (2010a) Complete genome sequence of the fire blight pathogen Erwinia pyrifoliae DSM 12163T and comparative genomic insights into plant pathogenicity. BMC Genomics 11:2PubMedCrossRefGoogle Scholar
  41. Smits THM, Rezzonico F, Kamber T, Blom J, Goesmann A, Frey JE, Duffy B (2010b) Complete genome sequence of the fire blight pathogen Erwinia amylovora CFBP 1430 and comparison to other Erwinia spp. Mol Plant-Microbe Interact 23:384–393PubMedCrossRefGoogle Scholar
  42. Smits THM, Rezzonico F, Kamber T, Goesmann A, Ishimaru CA, Stockwell VO, Frey JE, Duffy B (2010c) The genome sequence of the biocontrol agent Pantoea vagans strain C9-1. J Bacteriol 192:6486–6487PubMedCrossRefGoogle Scholar
  43. Smits THM, Rezzonico F, Pelludat C, Goesmann A, Frey JE, Duffy B (2010d) Genomic and phenotypic characterization of a non-pigmented variant of Pantoea vagans biocontrol strain C9-1 lacking the 530 kb megaplasmid pPag3. FEMS Microbiol Lett 308:48–54PubMedCrossRefGoogle Scholar
  44. Smits THM, Rezzonico F, Duffy B (2011a) Evolutionary insights from Erwinia amylovora genomics. J Biotechnol. doi: 10.1016/j.jbiotec.2010.1010.1075
  45. Smits THM, Rezzonico F, Kamber T, Goesmann A, Ishimaru CA, Frey JE, Stockwell VO, Duffy B (2011b) Metabolic versatility and antibiotic biosynthesis are distinguishing genomic features of the commercial fire blight antagonist Pantoea vagans C9-1. PLoS One 6(7):e22247Google Scholar
  46. Yang C, Leong J (1982) Production of deferriferrioxamines B and E from a ferroverdin-producing Streptomyces species. J Bacteriol 49:381–383Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Plant Protection DivisionAgroscope Changins-Wädenswil ACWWädenswilSwitzerland

Personalised recommendations