Archives of Microbiology

, Volume 193, Issue 12, pp 893–903 | Cite as

Efficient electron transfer from hydrogen to benzyl viologen by the [NiFe]-hydrogenases of Escherichia coli is dependent on the coexpression of the iron–sulfur cluster-containing small subunit

  • Constanze Pinske
  • Sara Krüger
  • Basem Soboh
  • Christian Ihling
  • Martin Kuhns
  • Mario Braussemann
  • Monique Jaroschinsky
  • Christopher Sauer
  • Frank Sargent
  • Andrea Sinz
  • R. Gary Sawers
Original Paper

Abstract

Escherichia coli can both oxidize hydrogen and reduce protons. These activities involve three distinct [NiFe]-hydrogenases, termed Hyd-1, Hyd-2, and Hyd-3, each minimally comprising heterodimers of a large subunit, containing the [NiFe] active site, and a small subunit, bearing iron–sulfur clusters. Dihydrogen-oxidizing activity can be determined using redox dyes like benzyl viologen (BV); however, it is unclear whether electron transfer to BV occurs directly at the active site, or via an iron–sulfur center in the small subunit. Plasmids encoding Strep-tagged derivatives of the large subunits of the three E. coli [NiFe]-hydrogenases restored activity of the respective hydrogenase to strain FTD147, which carries in-frame deletions in the hyaB, hybC, and hycE genes encoding the large subunits of Hyd-1, Hyd-2, and Hyd-3, respectively. Purified Strep-HyaB was associated with the Hyd-1 small subunit (HyaA), and purified Strep-HybC was associated with the Hyd-2 small subunit (HybO), and a second iron–sulfur protein, HybA. However, Strep-HybC isolated from a hybO mutant had no other associated subunits and lacked BV-dependent hydrogenase activity. Mutants deleted separately for hyaA, hybO, or hycG (Hyd-3 small subunit) lacked BV-linked hydrogenase activity, despite the Hyd-1 and Hyd-2 large subunits being processed. These findings demonstrate that hydrogenase-dependent reduction of BV requires the small subunit.

Keywords

[NiFe]-hydrogenase Iron–sulfur cluster Electron transfer Hydrogen evolution Hydrogen oxidation Viologen dyes 

References

  1. Akagi JM, Campbell LL (1961) Studies on thermophilic sulfate-reducing bacteria. II. Hydrogenase activity of Clostridium nigrificans. J Bacteriol 82:927–932PubMedGoogle Scholar
  2. Ballantine SP, Boxer DH (1985) Nickel-containing hydrogenase isoenzymes from anaerobically grown Escherichia coli K-12. J Bacteriol 163:454–459PubMedGoogle Scholar
  3. Ballantine SP, Boxer DH (1986) Isolation and characterisation of a soluble active fragment of hydrogenase isoenzyme 2 from the membranes of anaerobically grown Escherichia coli. Eur J Biochem 156:277–284PubMedCrossRefGoogle Scholar
  4. Begg YA, Whyte JN, Haddock BA (1977) The identification of mutants of Escherichia coli deficient in formate dehydrogenase and nitrate reductase activities using dye indicator plates. FEMS Microbiol Lett 2:47–50CrossRefGoogle Scholar
  5. Blokesch M, Magalon A, Böck A (2001) Interplay between the specific chaperone-like proteins HybG and HypC in maturation of hydrogenases 1, 2, and 3 from Escherichia coli. J Bacteriol 183:2817–2822PubMedCrossRefGoogle Scholar
  6. Böck A, King PW, Blokesch M, Posewitz MC (2006) Maturation of hydrogenases. Adv Microbiol Physiol 51:1–71CrossRefGoogle Scholar
  7. Böhm R, Sauter M, Böck A (1990) Nucleotide sequence and expression of an operon in Escherichia coli coding for formate hydrogenlyase components. Mol Microbiol 4:231–243PubMedCrossRefGoogle Scholar
  8. Casadaban M, Cohen SN (1979) Lactose genes fused to exogenous promoters in one step using Mu-lac bacteriophage: in vivo probe for transcriptional control sequences. Proc Natl Acad Sci USA 76:4530–4533PubMedCrossRefGoogle Scholar
  9. Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli using PCR products. Proc Natl Acad Sci USA 97:6640–6645PubMedCrossRefGoogle Scholar
  10. De Lacey AL, Santamaria E, Hatchikian EC, Fernandez VM (2000) Kinetic characterization of Desulfovibrio gigas hydrogenase upon selective chemical modification of amino acid groups as a tool for structure-function relationships. Biochim Biophys Acta 1481:371–380Google Scholar
  11. Dubini A, Pye RL, Jack RL, Palmer T, Sargent F (2002) How bacteria get energy from hydrogen: a genetic analysis of periplasmic hydrogen oxidation in Escherichia coli. Int J Hydr Energy 27:1413–1420CrossRefGoogle Scholar
  12. Forzi L, Sawers RG (2007) Maturation of [NiFe]-hydrogenases in Escherichia coli. Biometals 20:567–578CrossRefGoogle Scholar
  13. Gitlitz PH, Krasna AI (1975) Structural and catalytic properties of hydrogenase from Chromatium. Biochemistry 14:2561–2568PubMedCrossRefGoogle Scholar
  14. Hormann K, Andreesen JR (1994) Purification and characterization of a pyrrole-2-carboxylate oxygenase from Arthrobacter strain Py1. Biol Chem Hoppe Seyler 375:211–218PubMedGoogle Scholar
  15. Jacobi A, Rossmann R, Böck A. (1992) The hyp operon gene products are required for the maturation of catalytically active hydrogenase isoenzymes in Escherichia coli. Arch Microbiol 158:444–451Google Scholar
  16. Jones RW, Garland PB (1977) Sites and specificity of the reaction of bipyridylium compounds with anaerobic respiratory enzymes of Escherichia coli. Biochem J 164:199–211PubMedGoogle Scholar
  17. Kitagawa M et al (2005) Complete set of ORF clones of Escherichia coli ASKA library (a complete set of E. coli K-12 ORF archive): unique resources for biological research. DNA Res 12:291–299PubMedCrossRefGoogle Scholar
  18. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685PubMedCrossRefGoogle Scholar
  19. Laurinavichene TV, Zorin NA, Tsygankov AA (2002) Effect of redox potential on activity of hydrogenase 1 and hydrogenase 2 in Escherichia coli. Arch Microbiol 178:437–442PubMedCrossRefGoogle Scholar
  20. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275PubMedGoogle Scholar
  21. Lukey MJ, Parkin A, Roessler MM, Murphy BJ, Harmer J, Palmer T, Sargent F, Armstrong FA (2010) How Escherichia coli is equipped to oxidize hydrogen under different redox conditions. J Biol Chem 285:3928–3938Google Scholar
  22. Menon NK, Robbins J, Wendt JC, Shanmugam KT, Przybyla AE (1991) Mutational analysis and characterisation of the Escherichia coli hya operon, which encodes (NiFe) hydrogenase 1. J Bacteriol 173:4851–4861PubMedGoogle Scholar
  23. Menon NK, Chatelus CY, Dervartanian M, Wendt JC, Shanmugam KT, Peck HD Jr, Przybyla AE (1994) Cloning, sequencing, and mutational analysis of the hyb operon encoding Escherichia coli hydrogenase 2. J Bacteriol 176:4416–4423PubMedGoogle Scholar
  24. Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring HarborGoogle Scholar
  25. Paschos A, Bauer A, Zimmermann A, Zehelein E, Böck A (2002) HypF, a carbamoyl phosphate-converting enzyme involved in [NiFe] hydrogenase maturation. J Biol Chem 277:49945–49951PubMedCrossRefGoogle Scholar
  26. Redwood MD, Mikheenko IP, Sargent F, Macaskie LE (2008) Dissecting the roles of Escherichia coli hydrogenases in biohydrogen production. FEMS Microbiol Lett 278:48–55PubMedCrossRefGoogle Scholar
  27. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  28. Sargent F, Ballantine SP, Rugman PA, Palmer T, Boxer DH (1998) Reassignment of the gene encoding the Escherichia coli hydrogenase 2 small subunit: identification of a soluble precursor of the small subunit in a hypB mutant. Eur J Biochem 255:746–754PubMedCrossRefGoogle Scholar
  29. Sauter M, Böhm R, Böck A (1992) Mutational analysis of the operon (hyc) determining hydrogenase 3 formation in Escherichia coli. Mol Microbiol 6:1523–1532PubMedCrossRefGoogle Scholar
  30. Sawers G (1994) The hydrogenases and formate dehydrogenases of Escherichia coli. Antonie van Leeuwenhoek 66:57–88PubMedCrossRefGoogle Scholar
  31. Sawers RG, Boxer DH (1986) Purification and properties of membrane-bound hydrogenase isoenzyme 1 from anaerobically grown Escherichia coli K12. Eur J Biochem 156:265–275PubMedCrossRefGoogle Scholar
  32. Sawers RG, Ballantine SP, Boxer DH (1985) Differential expression of hydrogenase isoenzymes in Escherichia coli K-12: evidence for a third isoenzyme. J Bacteriol 164:1324–1331PubMedGoogle Scholar
  33. Sayavedra-Soto LA, Arp DJ (1993) In Azotobacter vinelandii hydrogenase, substitution of serine for the cysteine residues at positions 62, 65, 289, and 292 in the small (HoxK) subunit affects H2 oxidation. J Bacteriol 175:3414–3421PubMedGoogle Scholar
  34. Schubert T, Lenz O, Krause E, Volkmer R, Friedrich B (2007) Chaperones specific for the membrane-bound [NiFe]-hydrogenase interact with the Tat signal peptide of the small subunit precursor in Ralstonia eutropha H16. Mol Microbiol 66:453–467PubMedCrossRefGoogle Scholar
  35. Shevchenko A, Tomas H, Havlis J, Olsen JV, Mann M (2006) In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc 1:2856–2860PubMedCrossRefGoogle Scholar
  36. Soboh B, Krüger S, Kuhns M, Pinske C, Lehmann A, Sawers RG (2010) Development of a cell-free system reveals an oxygen-labile step in the maturation of [NiFe]-hydrogenase 2 of Escherichia coli. FEBS Lett 584:4109–4114PubMedCrossRefGoogle Scholar
  37. Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets; procedure and some applications. Proc Natl Acad Sci USA 76:4350–4354PubMedCrossRefGoogle Scholar
  38. Vignais PM, Billoud B (2007) Occurrence, classification, and biological function of hydrogenases: an overview. Chem Rev 107:4206–4272PubMedCrossRefGoogle Scholar
  39. Volbeda A, Charon MH, Piras C, Hatchikian EC, Frey M, Fontecilla-Camps JC (1995) Crystal structure of the nickel-iron hydrogenase from Desulfovibrio gigas. Nature 373:580–587PubMedCrossRefGoogle Scholar
  40. Winter G, Buhrke T, Lenz O, Jones AK, Forgber M, Friedrich B (2005) A model system for [NiFe] hydrogenase maturation studies: purification of an active site-containing hydrogenase large subunit without small subunit. FEBS Lett 579:4292–4296PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Constanze Pinske
    • 1
  • Sara Krüger
    • 1
  • Basem Soboh
    • 1
  • Christian Ihling
    • 2
  • Martin Kuhns
    • 1
  • Mario Braussemann
    • 1
  • Monique Jaroschinsky
    • 1
  • Christopher Sauer
    • 1
  • Frank Sargent
    • 3
  • Andrea Sinz
    • 2
  • R. Gary Sawers
    • 1
  1. 1.Institute for MicrobiologyMartin-Luther University Halle-WittenbergHalle (Saale)Germany
  2. 2.Institute of PharmacyMartin-Luther University Halle-WittenbergHalle (Saale)Germany
  3. 3.Division of Molecular MicrobiologyCollege of Life Sciences, University of DundeeDundeeScotland, UK

Personalised recommendations