Archives of Microbiology

, Volume 193, Issue 12, pp 867–882 | Cite as

Analysis of the surface proteins of Acidithiobacillus ferrooxidans strain SP5/1 and the new, pyrite-oxidizing Acidithiobacillus isolate HV2/2, and their possible involvement in pyrite oxidation

  • Andreas Klingl
  • Christine Moissl-Eichinger
  • Gerhard Wanner
  • Josef Zweck
  • Harald Huber
  • Michael Thomm
  • Reinhard Rachel
Original Paper


Two strains of rod-shaped, pyrite-oxidizing acidithiobacilli, their cell envelope structure and their interaction with pyrite were investigated in this study. Cells of both strains, Acidithiobacillus ferrooxidans strain SP5/1 and the moderately thermophilic Acidithiobacillus sp. strain HV2/2, were similar in size, with slight variations in length and diameter. Two kinds of cell appendages were observed: flagella and pili. Besides a typical Gram-negative cell architecture with inner and outer membrane, enclosing a periplasm, both strains were covered by a hitherto undescribed, regularly arranged 2-D protein crystal with p2-symmetry. In A. ferrooxidans, this protein forms a stripe-like structure on the surface. A similar surface pattern with almost identical lattice vectors was also seen on the cells of strain HV2/2. For the surface layer of both bacteria, a direct contact to pyrite crystals was observed in ultrathin sections, indicating that the S-layer is involved in maintaining this contact site. Observations on an S-layer-deficient strain show, however, that cell adhesion does not strictly depend on the presence of the S-layer and that this surface protein has an influence on cell shape. Furthermore, the presented data suggest the ability of the S-layer protein to complex Fe3+ ions, suggesting a role in the physiology of the microorganisms.


Acidithiobacillus Thiobacillus Cell surface S-layer EPS Pyrite Electron microscopy High-pressure freezing 



We wish to thank H. Op den Camp, V. Menath, C. Neuner, B. Salecker, and A. Zenker for technical assistance and contribution to this paper. We also wish to thank R. Witzgall and G. Schmalz for support and A. Probst and D. Näther for carefully reading the manuscript. A.K., H.H., G.S., M.T., and R.R. were supported by a grant of the DFG (TH 422/9-1/2).

Supplementary material

203_2011_720_MOESM1_ESM.pdf (1.2 mb)
Supplementary material 1 (PDF 1218 kb)


  1. Baumeister W, Lembcke G (1992) Structural features of archaebacterial cell envelopes. J Bioenerg Biomembr 24:567–575PubMedCrossRefGoogle Scholar
  2. Bayley DP, Koval SF (1994) Membrane association and isolation of the S-layer protein of Methanoculleus marisnigri. Can J Microbiol 40:237–241CrossRefGoogle Scholar
  3. Beveridge TJ, Pouwels PH, Sára M, Kotiranta A, Lounatmaa K, Kari K, Kerosuo E, Haapasalo M, Egelseer EM, Schocher I, Sleytr UB, Morelli L, Callegari ML, Nomellini JF, Bingle WH, Smit J, Leibovitz E, Lemaire M, Miras I, Salamitou S, Béguin P, Ohayon H, Gounon P, Matuschek M, Koval SF (1997) Functions of S-layers. FEMS Microbiol Rev 20:99–149PubMedCrossRefGoogle Scholar
  4. Burghardt T, Saller M, Gürster S, Müller D, Meyer C, Jahn U, Hochmuth E, Deutzmann R, Siedler F, Babinger P, Wirth R, Huber H, Rachel R (2008) Insight into the proteome of the hyperthermophilic Crenarchaeon Ignicoccus hospitalis: the major cytosolic and membrane proteins. Arch Microbiol 190:379–394PubMedCrossRefGoogle Scholar
  5. Carter P (1971) Spectrophotometric determination of serum iron at the submicrogram level with a new reagent (ferrozine). Anal Biochem 40:450–458PubMedCrossRefGoogle Scholar
  6. Cheong G-W, Cejka Z, Peters J, Stetter KO, Baumeister W (1991) The surface protein layer of Methanoplanus limicola: three-dimensional structure and chemical characterization. System Appl Microbiol 14:209–217Google Scholar
  7. Daoud J, Karamanev D (2006) Formation of jarosite during Fe2+ oxidation by Acidithiobacillus ferrooxidans. Miner Eng 19:960–967CrossRefGoogle Scholar
  8. Eichler J (2003) Facing extremes: archaeal surface-layer (glyco)proteins. Microbiology 149:3347–3351PubMedCrossRefGoogle Scholar
  9. Engelhardt H, Peters J (1998) Structural research on surface layers: a focus on stability, surface layer homology domains, and surface layer-cell wall interactions. J Struct Biol 124:276–302PubMedCrossRefGoogle Scholar
  10. Etzel K, Klingl A, Huber H, Rachel R, Schmalz G, Thomm M, Depmeier W (2008) Etching of 111 and 210 synthetic pyrite surfaces by two archaeal strains, Metallosphaera sedula and Sulfolobus metallicus. Hydrometallurgy 94:116–120CrossRefGoogle Scholar
  11. Fletcher CM, Coyne MJ, Bentley DL, Villa OF, und Comstock LE (2007) Phase-variable expression of a family of glycoproteins imparts a dynamic surface to a symbiont in its human intestinal ecosystem. PNAS 104:2413–2418PubMedCrossRefGoogle Scholar
  12. Fowler TA, Holmes PR, Crundwell FK (1999) Mechanism of pyrite dissolution in the presence of Thiobacillus ferrooxidans. Appl Environ Microbiol 65:2987–2993PubMedGoogle Scholar
  13. Gehrke T, Telegdi J, Thierry D, Sand W (1998) Importance of extracellular polymeric substances from Thiobacillus ferrooxidans for bioleaching. Appl Environ Microbiol 64:2743–2747PubMedGoogle Scholar
  14. Gorby YA, Yanina S, McLean JS, Rosso KM, Moyles D, Dohnalkova A, Beveridge TJ, Chang IS, Kim BH, Kim KS, Culley DE, Reed SB, Romine MF, Saffarini DA, Hill EA, Shi L, Elias DA, Kennedy DW, Pinchuk G, Watanabe K, Ishii S, Logan B, Nealson KH, Fredrickson JK (2006) Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc Natl Acad Sci 103:11358–11363PubMedCrossRefGoogle Scholar
  15. Grogan DW (1996) Organization and interactions of cell envelope proteins of the extreme thermoacidophile Sulfolobus acidocaldarius. Can J Microbiol 42:1163–1171CrossRefGoogle Scholar
  16. Gruber K, Sleytr UB (1988) Localized insertion of new S-layer during growth of Bacillus stearothermophilus strain PV72. EMBO Workshop on crystalline bacterial surface layers. Springer, HeidelbergGoogle Scholar
  17. Hallberg KB, González-Toril E, und Johnson DB (2010) Acidithiobacillus ferrivorans, sp. nov.; facultatively anaerobic, psychrotolerant iron- and sulfur-oxidizing acidophiles isolated from metal mine-impacted environments. Extremophiles 14:9–19PubMedCrossRefGoogle Scholar
  18. Harneit K, Göksel A, Kock D, Klock JH, Gehrke T, Sand W (2006) Adhesion to metal sulfide surfaces by cells of Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans and Leptospirillum ferrooxidans. Hydrometallurgy 83:245–254CrossRefGoogle Scholar
  19. Hofte M (1993) Classes of microbial siderophores. In: Barton LL, Hemming BC (eds) Iron Chelation in Plants and Soil Microorganisms. Academic Press, San Diego, p 4Google Scholar
  20. Hohenberg H, Mannweiler K, Müller M (1994) High-pressure freezing of cell suspensions in cellulose capillary tubes. J Microsc 175:34–43PubMedCrossRefGoogle Scholar
  21. Huber H (1987) Isolierung, Charakterisierung und taxonomische Einordnung neuer mesophiler, metallmetabolisierender Bakterien. PhD thesis. University of Regensburg, GermanyGoogle Scholar
  22. Huber G, Huber H, Stetter KO (1986) Isolation and characterization of new metal-mobilizing bacteria. Biotechnol Bioeng Symp 16:239–251Google Scholar
  23. Jiang C, Liu Y, Liu Y, Guo X, Liu SJ (2009) Isolation and characterization of ferrous- and sulfur-oxidizing bacteria from Tengchong solfataric region, China. J Environ Sci (China) 21:1247–1252CrossRefGoogle Scholar
  24. Jones RA, Koval SF, Nesbitt HW (2003) Surface alteration of arsenopyrite (FeAsS) by Thiobacillus ferrooxidans. Geochim Cosmochim Acta 67:955–965CrossRefGoogle Scholar
  25. Junglas B, Briegel A, Burghardt T, Walther P, Wirth R, Huber H, Rachel R (2008) Ignicoccus hospitalis and Nanoarchaeum equitans: ultrastructure, cell-cell interaction, and 3D reconstruction from serial sections of freeze-substituted cell and by electron cryotomography. Arch Microbiol 190:395–408PubMedCrossRefGoogle Scholar
  26. Kärcher U, Schröder H, Haslinger E, Allmaier G, Schreiner R, Wieland F, Haselbeck A, und König H (1993) Primary structure of the heterosaccharide of the surface glycoprotein of Methanothermus fervidus. J Biol Chem 268:26821–26826PubMedGoogle Scholar
  27. Kelly DW, Wood AP (2000) Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen. nov., Halothiobacillus gen. nov. and Thermithiobacillus gen. nov. IJSEM 50:511–516PubMedGoogle Scholar
  28. König H, Rachel R, Claus H (2007) Proteinaceous surface layers of Archaea: ultrastructure and biochemistry. In: Cavicchioli R (ed) Archaea: molecular and cell biology. American Society of Microbiology Press, Washington, DC, USA, pp 315–340Google Scholar
  29. Larsson L, Olsson G, Holst O, Karlsson HT (1993) Oxidation of pyrite by Acidianus brierleyi: Importance of close contact between the pyrite and the microorganisms. Biotechnol Lett 15:99–104CrossRefGoogle Scholar
  30. Lazar P (2004) Optimierung der Gewinnung von extrazellulären polymeren Substanzen von Laugungsbakterien. Diploma thesis. University of Hamburg, GermanyGoogle Scholar
  31. Lee S-W, Sabet M, Um H-S, Yang J, Kim HC, Zhu W (2006) Identification and characterization of the genes encoding a unique surface (S-) layer of Tannerela forsythia. Gene 371:102–111PubMedCrossRefGoogle Scholar
  32. Liu H-L, Chen B-Y, Lan Y-W, Cheng Y-C (2003) SEM and AFM images of pyrite surfaces avter bioleaching by the indigenous Thiobacillus thiooxidans. Appl Microbiol Biotechnol 62:414–420PubMedCrossRefGoogle Scholar
  33. Ludwig W, Strunk O, Klugbauer N, Weizenegger M, Neumaier J, Bachleitner M, Schleifer KH (1998) Bacterial phylogeny based on comparative sequence analysis. Electrophoresis 19:554–568PubMedCrossRefGoogle Scholar
  34. Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yedhukumar, Buchner A, Lai T, Steppi S, Jobb G, Förster W, Brettske I, Gerber S, Ginhart AW, Gross O, Grumann S, Hermann S, Jost R, König A, Liss T, Lüßmann R, May M, Nonhoff B, Reichel B, Strehlow R, Stamatakis A, Stuckmann N, Vilbig A, Lenke M, Ludwig T, Bode A, Schleifer K-H (2004) ARB: a software environment for sequence data. Nucl Acids Res 32:1363–1371PubMedCrossRefGoogle Scholar
  35. Merroun ML, Raff J, Rossberg A, Hennig C, Reich T, Selenska-Pobell S (2005) Complexation of uranium by cells and S-layer sheets of Bacillus sphaericus JG-A12. Appl Environ Microbiol 71:5532–5543PubMedCrossRefGoogle Scholar
  36. Mescher MF, Strominger JL (1976) Structural (shape-maintaining) role of the cell surface glycoprotein of Halobacterium salinarium. PNAS 73:2687–2691PubMedCrossRefGoogle Scholar
  37. Mesnage S, Fontaine T, Mignot T, Delepierre M, Mock M, und Fouet A (2000) Bacterial SLH domain proteins are non-covalently anchored to the cell surface via a conserved mechanism involving wall polysaccharide pyruvylation. EMBO J 19:4473–4484PubMedCrossRefGoogle Scholar
  38. Messner P (2004) Prokaryotic glycoproteins: Unexplored but Important. J Bacteriol 186:2517–2519PubMedCrossRefGoogle Scholar
  39. Messner P, Schäffer C (2000) Surface layer glycoproteins of Bacteria and Archaea. In: Doyle RJ (ed) Glycomicrobiology. Kluwer Academic Publisher, New York, pp 93–125Google Scholar
  40. Messner P, Schäffer C (2003) Prokaryotic glycoproteins. Prog Chem Org Nat Prod 85:51–124Google Scholar
  41. Messner P, Pum D, Sára M, Stetter KO, Sleytr UB (1986) Ultrastructure of the cell envelope of the archaebacteria Thermoproteus tenax and Thermoproteus neutrophilus. J Bacteriol 166:1046–1054PubMedGoogle Scholar
  42. Mjoli N, Kulpa CF (1988) Identification of a unique outer membrane protein required for iron oxidation in Thiobacillus ferrooxidans. In: Norris PR, Kelly DP (eds) Biohydrometallurgy—Proceedings of the International Symposium Warwick 1987: pp 89–103. Science and Technology Letters. Antony Rowe Ltd., Kew, Great BritainGoogle Scholar
  43. Peters J, Nitsch M, Kühlmorgen B, Golbik R, Lupas A, Kellermann J, Engelhardt H, Pfander J-P, Müller S, Goldie K, Engel A, Stetter K-O, Baumeister W (1995) Tetrabrachion: a filamentous archaebacterial surface protein assembly of unusual structure and extreme stability. J Mol Biol 245:385–401PubMedCrossRefGoogle Scholar
  44. Pley U, Schipka J, Gambacorta A, Jannasch HW, Fricke H, Rachel R, Stetter KO (1991) Pyrodictium abyssi sp. nov. represents a novel heterotrophic marine archaeal hyperthermophile growing at 110°C. System Appl Microbiol 14:245–253Google Scholar
  45. Pum D, Messner P, Sleytr UB (1991) Role of the S-layer in morphogenesis and cell division of the archaebacterium Methanocorpusculum sinense. J Bacteriol 173:6865–6873PubMedGoogle Scholar
  46. Rachel R (1999) Fine structure of hyperthermophilic prokaryotes. In: Seckbach J (ed) Enigmatic microorganisms and life in extreme environments. Kluwer Academic Publisher, The Netherlands, pp 277–289Google Scholar
  47. Rachel R, Engel AM, Huber R, Stetter KO, Baumeister W (1990) A porin-type protein is the main constituent of the cell envelope of the ancestral eubacterium Thermotoga maritima. FEBS Lett 262:64–68CrossRefGoogle Scholar
  48. Rachel R, Pum D, Šmarda J, Šmajs D, Komrska J, Krzyzánek V, Rieger G, Stetter KO (1997) II Fine structure of S-layers. FEMS Microbiol Rev 20:13–23CrossRefGoogle Scholar
  49. Rachel R, Wyschkony I, Riehl S, Huber H (2002) The ultrastructure of Ignicoccus: evidence for a novel outer membrane and for intracellular vesicle budding in an archaeon. Archaea 1:9–18PubMedCrossRefGoogle Scholar
  50. Rachel R, Meyer C, Klingl A, Gürster S, Heimerl T, Wasserburger N, Burghardt T, Küper U, Bellack A, Schopf S, Wirth R, Huber H, Wanner G (2010) Analysis of the ultrastructure of archaea by electron microscopy. Method Cell Biol 96:47–69CrossRefGoogle Scholar
  51. Reguera G, McCarthy KD, Mehta T, Nicoll JS, Tuominen MT, Lovley DR (2005) Extracellular electron transfer via microbial nanowires. Nature 435:1098–1101PubMedCrossRefGoogle Scholar
  52. Reynolds ES (1963) Use of lead citrate as a stain in electron microscopy. Cell Biol 17:208–213CrossRefGoogle Scholar
  53. Ristl R, Steiner K, Zarschler K, Zayni S, Messner P, Schäffer C (2011) The S-layer glycome—adding to the sugar coat of bacteria. Int J Microbiol 2011Google Scholar
  54. Rohwerder T, Gehrke T, Kinzler K, Sand W (2003) Bioleaching review part A: progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation. Appl Microbiol Biotechnol 63:239–248PubMedCrossRefGoogle Scholar
  55. Rose AL, Waite TD (2003) Kinetics of iron complexation by dissolved natural organic matter in coastal waters. Mar Chem 84:85–103CrossRefGoogle Scholar
  56. Sand W, Gehrke T (2006) Extracellular polymeric substances mediate bioleaching/biocorrosion via interfacial processes involving iron(III) ions and acidophilic bacteria. Res Microbiol 157:49–56PubMedCrossRefGoogle Scholar
  57. Sandercock LE, MacLeod AM, Ong E, Warren RAJ (1994) Non-S-layer glycoproteins in eubacteria. FEMS Microbiol Lett 118:1–8PubMedCrossRefGoogle Scholar
  58. Sára M, Sleytr UB (2000) S-Layer Proteins. J Bacteriol 182:859–868PubMedCrossRefGoogle Scholar
  59. Saxton WO (1996) Semper: distortion compensation, selective averaging, 3-D reconstruction and transfer function correction in a highly programmable system. J Struct Biol 116:230–236PubMedCrossRefGoogle Scholar
  60. Schäffer C, Messner P (2001) Glycobiology of surface layer proteins. Biochimie 83:591–599PubMedCrossRefGoogle Scholar
  61. Schäffer C, Wugeditsch T, Kählig H, Scheberl A, Zayni S, Messner P (2002) The surface layer (s-layer) glycoprotein of Geobacillus stearothermophilus NRS 2004/3a. J Biol Chem 277:6230–6239PubMedCrossRefGoogle Scholar
  62. Schägger H, von Jagow G (1987) Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166:223–231CrossRefGoogle Scholar
  63. Schirmer T (1998) General and specific porins from bacterial outer membranes. J Struct Biol 121:101–109PubMedCrossRefGoogle Scholar
  64. Schuster KU (2003) Der Surface Layer von “Nanoarchaeum equitans”. Diploma thesis. University of Regensburg, GermanyGoogle Scholar
  65. Segrest JP, Jackson RL (1972) Molecular weight determination of glycoproteins by polyacrylamide gel electrophoresis in sodium dodecyl sulphate. Method Enzymol 28:54–63CrossRefGoogle Scholar
  66. Shears GE, Ledward DA, Neale RJ (1987) Iron complexation to carboxyl groups in a bovine serum albumin digest. Int J Food Sci Tech 22:265–272CrossRefGoogle Scholar
  67. Silverman MP, Lundgren DG (1959) Studies on the chemoautotrophic iron bacterium Ferrobacillus ferrooxidans. J Bacteriol 78:326–331PubMedGoogle Scholar
  68. Sleytr UB (1997) I Basic and applied S-layer research. FEMS Microbiol Rev 20:5–12CrossRefGoogle Scholar
  69. Sleytr UB, Messner P, Pum D, Sára M (1988) Crystalline bacterial cell surface layers. EMBO Workshop on crystalline bacterial surface layers. Springer, HeidelbergGoogle Scholar
  70. Stieglmeier M, Wirth R, Kminek G, Moissl-Eichinger C (2009) Cultivation of Anaerobic and Facultatively Anaerobic Bacteria from Spacecraft-associated Clean Rooms. Appl Environ Microbiol 75:3484–3491CrossRefGoogle Scholar
  71. Studer D, Graber W, Al-Moudi A, Eggli P (2001) A new approach for cryofixation by high-pressure freezing. J Microsc 203:285–294PubMedCrossRefGoogle Scholar
  72. Valdés J, Pedroso I, Quatrini R, Dodson RJ, Tettelin H, Blake II R, Eisen JA, Holmes DS (2008) Acidithiobacillus ferrooxidans metabolism: from genome sequence to industrial applications. BMC Genomics 9:1–24CrossRefGoogle Scholar
  73. Veith A, Klingl A, Zolghadr B, Lauber K, Mentele R, Lottspeich F, Rachel R, Albers S-V, Kletzin A (2009) Acidianus, Sulfolobus and Metallosphaera surface layers: structure, composition and gene expression. Mol Microbiol 73:58–72PubMedCrossRefGoogle Scholar
  74. Walther P, Ziegler A (2002) Freeze substitution of high-pressure frozen samples: the visibility of biological membranes is improved when the substitution medium contains water. J Microsc 208:3–10PubMedCrossRefGoogle Scholar
  75. Wieland F, Lechner J, Sumper M (1982) The cell wall glycoprotein of Halobacteria: structural, functional and biosynthetic aspects. Zbl Bakt Hyg I Abt Orig C 3:161–170Google Scholar
  76. Wieland F, Heitzer R, Schaefer W (1983) Asparaginylglucose: novel type of carbohydrate linkage. PNAS 80:5470–5474PubMedCrossRefGoogle Scholar
  77. Wildhaber I, Baumeister W (1987) The cell envelope of Thermoproteus tenax: three-dimensional structure of the surface layer and its role in shape maintenance. EMBO J 6:1475–1480PubMedGoogle Scholar
  78. Witter AE, Hutchins DA, Butler A, Luther III GW (2000) Determination of conditional stability constants and kinetic constants for strong model Fe-binding ligands in seawater. Mar Chem 69:1–17CrossRefGoogle Scholar
  79. Wolf YI, Rogozin IB, Grishin NV, Koonin EV (2002) Genome trees and the tree of life. Trends Genet 18:472–479PubMedCrossRefGoogle Scholar
  80. Wu D, Hugenholtz P, Mavromatis K, Pukall R, Dalin E, Ivanova NN, Kunin V, Goodwin L, Wu M, Tindall BJ, Hooper SD, Pati A, Lykidis A, Spring S, Anderson IJ, D`haeseleer P, Zemla A, Singer M, Lapidus A, Nolan M, Copeland A, Han C, Chen F, Cheng JF, Lucas S, Kerfeld C, Lang E, Gronow S, Chain P, Bruce D, Rubin EM, Kyrpides NC, Klenk HP, Eisen JA (2009) A phylogeny-driven genomic encyclopaedia of Bacteria and Archaea. Nature 462:1056–1060PubMedCrossRefGoogle Scholar
  81. Zellner G, Stackebrandt E, Kneifel H, Messner P, Sleytr UB, Conway de Macario E, Zabel H-P, Stetter KO, Winter J (1989) Isolation and characterization of a thermophilic, sulfate reducing archaebacterium, Archaeoglobus fulgidus strain Z. System Appl Microbiol 11:151–160Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Andreas Klingl
    • 1
  • Christine Moissl-Eichinger
    • 2
  • Gerhard Wanner
    • 3
  • Josef Zweck
    • 4
  • Harald Huber
    • 2
  • Michael Thomm
    • 2
  • Reinhard Rachel
    • 1
  1. 1.Centre for Electron Microscopy at the Institute for AnatomyUniversity of RegensburgRegensburgGermany
  2. 2.Institute for Microbiology and Archaea CenterUniversity of RegensburgRegensburgGermany
  3. 3.BiocentreUniversity of MunichMunichGermany
  4. 4.Centre for EM at the Institute of PhysicsUniversity of RegensburgRegensburgGermany

Personalised recommendations