Archives of Microbiology

, Volume 193, Issue 11, pp 797–809 | Cite as

Survival of thermophilic and hyperthermophilic microorganisms after exposure to UV-C, ionizing radiation and desiccation

  • Kristina BebloEmail author
  • Thierry Douki
  • Gottfried Schmalz
  • Reinhard Rachel
  • Reinhard Wirth
  • Harald Huber
  • Günther Reitz
  • Petra Rettberg
Original Paper


In this study, we investigated the ability of several (hyper-) thermophilic Archaea and phylogenetically deep-branching thermophilic Bacteria to survive high fluences of monochromatic UV-C (254 nm) and high doses of ionizing radiation, respectively. Nine out of fourteen tested microorganisms showed a surprisingly high tolerance against ionizing radiation, and two species (Aquifex pyrophilus and Ignicoccus hospitalis) were even able to survive 20 kGy. Therefore, these species had a comparable survivability after exposure to ionizing radiation such as Deinococcus radiodurans. In contrast, there was nearly no difference in survival of the tested strains after exposure to UV-C under anoxic conditions. If the cells had been dried in advance of UV-C irradiation, they were more sensitive to UV-C radiation compared with cells irradiated in liquid suspension; this effect could be reversed by the addition of protective material like sulfidic ores before irradiation. By exposure to UV-C, photoproducts were formed in the DNA of irradiated Archaea and Bacteria. The distribution of the main photoproducts was species specific, but the amount of the photoproducts was only partly dependent on the applied fluence. Overall, our results show that tolerance to radiation seems to be a common phenomenon among thermophilic and hyperthermophilic microorganisms.


Radiation UV-C Ionizing Survival Hyperthermophilic Desiccation 



The authors want to thank Prof. Dr. Reinhard Sterner (Institute of Biophysics und Physical Biochemistry, University of Regensburg, Germany) for fruitful discussions and Dr. Andreas Klingl (Center for Electron Microscopy, University of Regensburg, Germany) for performing the scanning electron microscopy. Survival data from B. subtilis and D. radiodurans were kindly provided by Marko Wassmann and Anja Bauermeister (both German Aerospace Centre, Institute of Aerospace Medicine, Radiation Biology Division, Cologne, Germany).


  1. Allen MB (1959) Studies with Cyanidium caldarium, an anomalously pigmented chlorophyte. Arch Microbiol 32:270–277CrossRefGoogle Scholar
  2. Alper T (1961) Variability in the oxygen effect observed with microorganisms. II. Escherichia coli B. Int J Radiat Biol 3:369–377PubMedCrossRefGoogle Scholar
  3. Anderson AW, Nordan HC, Cain RF, Parrish G, Duggan DE (1956) Studies on a radiation-resistant micrococcus. Isolation, morphology, cultural characteristics and resistance of γ-radiation. Food Technol 10:575–577Google Scholar
  4. Arrage AA, Phelps TJ, Benoit RE, White DC (1993) Survival of subsurface microorganisms exposed to UV radiation and hydrogen peroxide. Appl Environ Microbiol 59:3545–3550PubMedGoogle Scholar
  5. Atomi H, Matsumi R, Imanaka T (2004) Reverse gyrase is not a prerequisite for hyperthermophilic life. J Bacteriol 186:4829–4833PubMedCrossRefGoogle Scholar
  6. Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS (1979) Methanogens: reevaluation of al unique biological group. Microbiol Rev 43:260–296PubMedGoogle Scholar
  7. Barken KB, Pamp SJ, Yang L, Gjermansen M, Bertrand JJ, Klausen M, Givskov M, Whitchurch CB, Engel JN, Tolker-Nielsen T (2008) Roles of type IV pili, flagellum-mediated motility and extracellular DNA in the formation of mature multicellular structures in Pseudomonas aeruginosa biofilms. Environ Microbiol 10:2331–2343PubMedCrossRefGoogle Scholar
  8. Barker S, Weinfeld M, Murray D (2005) DNA–protein crosslinks: their induction, repair, and biological consequences. Mutat Res 589:111–135PubMedCrossRefGoogle Scholar
  9. Bauermeister A, Bentchikou E, Moeller R, Rettberg P (2009) Roles of PprA, IrrE, and RecA in the resistance of Deinococcus radiodurans to germicidal and environmentally relevant UV radiation. Arch Microbiol 191:913–918PubMedCrossRefGoogle Scholar
  10. Bauermeister A, Moeller R, Reitz G, Sommer S, Rettberg P (2011) Effect of relative humidity on Deinococcus radiodurans’ resistance to prolonged desiccation, heat, ionizing, germicidal, and environmentally relevant UV radiation. Microb Ecol. doi:  10.1007/s00248-010-9785-4
  11. Beblo K, Rabbow E, Rachel R, Huber H, Rettberg P (2009) Tolerance of thermophilic and hyperthermophilic microorganisms to desiccation. Extremophiles 13:521–531PubMedCrossRefGoogle Scholar
  12. Bell SD, Botting CH, Wardleworth BN, Jackson SP, White MF (2002) The interaction of Alba, a conserved archaeal chromatin protein, with Sir2 and its regulation by acetylation. Science 296:148–151PubMedCrossRefGoogle Scholar
  13. Boussau B, Blanquart S, Necsulea A, Lartillot N, Gouy M (2008) Parallel adaptations to high temperatures in the Archaean eon. Nature 456:942–945PubMedCrossRefGoogle Scholar
  14. Brock TD, Brock KM, Belly RT, Weiss RL (1972) Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Arch Microbiol 84:54–68CrossRefGoogle Scholar
  15. Choli T, Henning P, Wittmann-Liebold B, Reinhardt R (1988) Isolation, characterization and microsequence analysis of a small basic methylated DNA-binding protein from the Archaebacterium, Sulfolobus solfataricus. Biochim Biophys Acta 950:193–203PubMedGoogle Scholar
  16. Chyba CF (2005) Rethinking Earth’s early atmosphere. Science 308:962–963PubMedCrossRefGoogle Scholar
  17. Clavero MRS, Monk JD, Beuchat LR, Doyle MP, Brackett RE (1994) Inactivation of Escherichia coli 0157:H7, Salmonellae, and Campylobacter jejuni in raw ground beef by gamma irradiation. Appl Environ Microbiol 60:2069–2075PubMedGoogle Scholar
  18. Cox MM, Battista JR (2005) Deinococcus radiodurans—the consummate survivor. Nat Rev Microbiol 3:882–892PubMedCrossRefGoogle Scholar
  19. Daly MJ (2009) A new perspective on radiation resistance based on Deinococcus radiodurans. Nat Rev Microbiol 7:237–245PubMedCrossRefGoogle Scholar
  20. Dame RT (2005) The role of nucleoid-associated proteins in the organization and compaction of bacterial chromatin. Mol Microbiol 56:858–870PubMedCrossRefGoogle Scholar
  21. Deckert G, Warren PV, Gaasterland T, Young WG, Lenox AL, Graham DE, Overbeek R, Snead MA, Keller M, Aujay M, Huber R, Feldman RA, Short JM, Olsen GJ, Swanson RV (1998) The complete genome of the hyperthermophilic bacterium Aquifex aeolicus. Nature 392:353–358PubMedCrossRefGoogle Scholar
  22. DiGiulio M (2000) The universal ancestor lives in a thermophilic or hyperthermophilic environment. J Theor Biol 203:203–213CrossRefGoogle Scholar
  23. DiRuggiero J, Santangelo N, Nackerdien Z, Ravel J, Robb FT (1997) Repair of extensive ionizing-radiation DNA damage at 95 degrees C in the hyperthermophilic archaeon Pyrococcus furiosus. J Bacteriol 179:4643–4645PubMedGoogle Scholar
  24. Dorazi R, Götz D, Munro S, Bernander R, White MF (2007) Equal rates of repair of DNA photoproducts in transcribed and non-transcribed strands in Sulfolobus solfataricus. Mol Microbiol 63:521–529PubMedCrossRefGoogle Scholar
  25. Dose K, Klein A (1996) Response of Bacillus subtilis spores to dehydration and UV irradiation at extremely low temperatures. Orig Life Evol Biosph 26:47–59PubMedCrossRefGoogle Scholar
  26. Douki T, Cadet J (2001) Individual determination of the yield of the main UV-induced dimeric pyrimidine photoproducts in DNA suggest a high mutagenicity of CC photolesions. Biochemistry 40:2495–2501PubMedCrossRefGoogle Scholar
  27. Douki T, Cadet J (2003) Formation of the spore photoproduct and other dimeric lesions between adjacent pyrimidines in UVC-irradiated dry DNA. Photochem Photobiol Sci 2:433–436PubMedCrossRefGoogle Scholar
  28. Douki T, Court M, Sauvaigo S, Odin F, Cadet J (2000) Formation of the main UV-induced thymine dimeric lesions within isolated and cellular DNA as measured by HPLC–MS/MS. J Biol Chem 275:11678–11685PubMedCrossRefGoogle Scholar
  29. Fiala G, Stetter KO (1986) Pyrococcus furiosus sp. nov. represents a novel genus of marine heterotrophic archaebacteria growing optimally at 100°C. Arch Microbiol 145:56–61CrossRefGoogle Scholar
  30. Fiala G, Stetter KO, Jannasch HW, Langworthy TA, Madon J (1986) Staphylothermus marinus sp. nov. respresents a novel genus of extremely thermophilic submarine heterotrophic archaebacteria growing up to 98°C. System Appl Microbiol 8:106–113Google Scholar
  31. Franson MAH (ed) (1985) Standard methods for the examination of water and wastewater. In: American Public Health Association, 16th edn. Washington, DCGoogle Scholar
  32. Fredrickson JK, Li SM, Gaidamakova EK, Matrosova VY, Zhai M, Sulloway HM, Scholten JC, Brown MG, Balkwill DL, Daly MJ (2008) Protein oxidation: key to bacterial desiccation resistance? ISME J 2:393–403PubMedCrossRefGoogle Scholar
  33. Froels S, Gordon PMK, Panlilio MA, Duggin IG, Bell SD, Sensen CW, Schleper C (2007) Response of the hyperthermophilic Archaeon Sulfolobus solfataricus to UV damage. J Bacteriol 189:8708–8718CrossRefGoogle Scholar
  34. Froels S, Ajon M, Wagner M, Teichmann D, Zolghadr B, Folea M, Boekema EJ, Driessen AJ, Schleper C, Albers SV (2008) UV-inducible cellular aggregation of the hyperthermophilic archaeon Sulfolobus solfataricus is mediated by pili formation. Mol Microbiol 70:938–952CrossRefGoogle Scholar
  35. Gerard E, Jolivet E, Prieur D, Forterre P (2001) DNA protection mechanisms are not involved in the radioresistance of the hyperthermophilic archaea Pyrococcus abyssi and P. furiosus. Mol Genet Genomics 266:72–78PubMedCrossRefGoogle Scholar
  36. Gladyshev E, Meselson M (2008) Extreme resistance of bdelloid rotifers to ionizing radiation. Proc Natl Acad Sci USA 105:5139–5144PubMedCrossRefGoogle Scholar
  37. Grogan DW (1998) Hyperthermophiles and the problem of DNA instability. Mol Microbiol 28:1043PubMedCrossRefGoogle Scholar
  38. Grogan DW (2000) The question of DNA-repair in hyperthermophilic archaea. Trends Microbiol 8:180–185PubMedCrossRefGoogle Scholar
  39. Harm W (1980) Biological effects of ultraviolet radiation. Cambridge University Press, CambridgeGoogle Scholar
  40. Holloman WK, Schirawski J, Holliday R (2007) Towards understanding the extreme radiation resistance of Ustilago maydis. Trends Microbiol 15:525–529PubMedCrossRefGoogle Scholar
  41. Horneck G, Rettberg P, Reitz G, Wehner J, Eschweiler U, Strauch K, Panitz C, Starke V, Baumstark-Khan C (2001) Protection of bacterial spores in space, a contribution to the discussion on panspermia. Orig Life Evol Biosph 31:527–547PubMedCrossRefGoogle Scholar
  42. Huber G, Stetter KO (1991) Sulfolobus metallicus, sp. nov., a novel strictly chemolithotrophic thermophilic archaeal species of metal-mobilizers. Syst Appl Microbiol 14:372–378Google Scholar
  43. Huber H, Thomm M, Koenig H, Thies G, Stetter KO (1982) Methanococcus thermolithotrophicus, a novel thermophilic lithotrophic methanogen. Arch Microbiol 132:47–50CrossRefGoogle Scholar
  44. Huber G, Spinnler C, Gambacorta A, Stetter KO (1989) Metallosphaera sedula gen. and sp. nov. represents a new genus of aerobic, metal-mobilizing, thermoacetophilic archaebacteria. Syst Appl Microbiol 12:38–47Google Scholar
  45. Huber R, Wilharm T, Huber D, Trincone A, Burggraf S, Koenig H, Rachel R, Rockinger I, Fricke H, Stetter KO (1992) Aquifex pyrophilus gen. nov. sp. nov., represents a novel group of marine hyperthermophilic hydrogen-oxidizing bacterium. Syst Appl Microbiol 15:340–351Google Scholar
  46. Huber H, Hohn MJ, Rachel R, Fuchs T, Wimmer VC, Stetter KO (2002) A new phylum of archaea represented by a nanosized hyperthermophilic symbiont. Nature 417:63–67PubMedCrossRefGoogle Scholar
  47. Jahn U, Gallenberger M, Paper W, Junglas B, Eisenreich W, Stetter KO, Rachel R, Huber H (2008) Nanoarchaeum equitans and Ignicoccus hospitalis: new insights into a unique, intimate association of two Archaea. J Bacteriol 190:1743–1750PubMedCrossRefGoogle Scholar
  48. Jolivet E, L’Haridon S, Corre E, Forterre P, Prieur D (2003) Thermococcus gammatolerans sp. nov., a hyperthermophilic archaeon from a deep-sea hydrothermal vent that resists ionizing radiation. Int J Syst Evol Microbiol 53:847–851PubMedCrossRefGoogle Scholar
  49. Jolivet E, Corre E, L’Haridon S, Forterre P, Prieur D (2004) Thermococcus marinus sp. nov. and Thermococcus radiotolerans sp. nov., two hyperthermophilic archaea from deep-sea hydrothermal vents that resist ionizing radiation. Extremophiles 8:219–227PubMedCrossRefGoogle Scholar
  50. Jones W, Leigh J, Mayer F, Woese C, Wolfe R (1984) Methanococcus jannaschii sp. nov., an extremely thermophilic methanogen from a submarine hydrothermal vent. Arch Microbiol 136:254–261CrossRefGoogle Scholar
  51. Kikuchi A, Asai K (1984) Reverse gyrase—a topoisomerase which introduces positive superhelical turns into DNA. Nature 309:677–681PubMedCrossRefGoogle Scholar
  52. Kish A, Kirkali G, Robinson C, Rosenblatt R, Jaruga P, Dizdaroglu M, DiRuggiero J (2009) Salt shield: intracellular salts provide cellular protection against ionizing radiation in the halophilic archaeon, Halobacterium salinarum NRC-1. Environ Microbiol 11:1066–1078PubMedCrossRefGoogle Scholar
  53. Klenk HP, Clayton RA, Tomb JF, White O, Nelson KE, Ketchum KA, Dodson RJ, Gwinn M, Hickey EK, Peterson JD, Richardson DL, Kerlavage AR, Graham DE, Kyrpides NC, Fleischmann RD, Quackenbush J, Lee NH, Sutton GG, Gill S, Kirkness EF, Dougherty BA, McKenney K, Adams MD, Loftus B, Peterson S, Reich CI, McNeil LK, Badger JH, Glodek A, Zhou L, Overbeek R, Gocayne JD, Weidman JF, McDonald L, Utterback T, Cotton MD, Spriggs T, Artiach P, Kaine BP, Sykes SM, Sadow PW, D’Andrea KP, Bowman C, Fujii C, Garland SA, Mason TM, Olsen GJ, Fraser CM, Smith HO, Woese CR, Venter CJ (1997) The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus. Nature 390:364–370PubMedCrossRefGoogle Scholar
  54. Kluyver AJ, Schnellen GTP (1947) Fermentation of carbon monoxide by pure cultures of methane bacteria. Arch Biochem 14:57–70PubMedGoogle Scholar
  55. Komori K, Miyata T, DiRuggiero J, Holley-Shanks R, Hayashi I, Cann IK, Mayanagi K, Shinagawa H, Ishino Y (2000) Both RadA and RadB are involved in homologous recombination in Pyrococcus furiosus. J Biol Chem 275:33782–33790PubMedCrossRefGoogle Scholar
  56. Kopylov VM, Bonch-Osmolovskaya EA, Svetlichnyi VA, Miroshnichenko ML, Skobkin VS (1993) γ-resistance and UV-sensitivity of extremely thermophilic archaebacteria and eubacteria. Mikrobiologiya 62:90–95Google Scholar
  57. Kottemann M, Kish A, Iloanusi C, Bjork S, DiRuggiero J (2005) Physiological responses of the halophilic archaeon Halobacterium sp. strain NRC1 to desiccation and gamma irradiation. Extremophiles 9:219–227PubMedCrossRefGoogle Scholar
  58. La Paglia C, Hartzell PL (1997) Stress-induced production of biofilm in the hyperthermophile Archaeoglobus fulgidus. Appl Environ Microbiol 63:3158–3163Google Scholar
  59. Maeder DL, Weiss RB, Dunn DM, Cherry JL, González JM, DiRuggiero J, Robb FT (1999) Divergence of the hyperthermophilic archaea Pyrococcus furiosus and P. horikoshii inferred from complete genomic sequences. Genetics 152:1299–1305PubMedGoogle Scholar
  60. Mattimore V, Battista R (1996) Radioresistance of Deinococcus radiodurans: functions necessary to survive ionizing radiation are also necessary to survive prolonged desiccation. J Bacteriol 178:633–637PubMedGoogle Scholar
  61. McCready S, Marcello L (2003) Repair of UV damage in Halobacterium salinarum. Biochem Soc Trans 31:694–698PubMedCrossRefGoogle Scholar
  62. McCready S, Carr AM, Lehmann AR (1993) Repair of cyclobutane pyrimidine dimers and 6-4 photoproducts in the fission yeast Schizosaccharomyces pombe. Mol Microbiol 10:885–890PubMedCrossRefGoogle Scholar
  63. Minton KW (1994) DNA repair in the extremely radioresistant bacterium Deinococcus radiodurans. Mol Microbiol 13:9–15PubMedCrossRefGoogle Scholar
  64. Mitchell DL, Nairn RS (1989) The biology of the (6-4) photoproduct. Photochem Photobiol 49:805–819PubMedCrossRefGoogle Scholar
  65. Moeller R, Horneck G, Facius R, Stackebrandt E (2005) Role of pigmentation in protecting Bacillus sp. endospores against environmental UV radiation. FEMS Microbiol Ecol 51:231–236PubMedCrossRefGoogle Scholar
  66. Moeller R, Stackebrandt E, Douki T, Cadet J, Rettberg P, Mollenkopf HJ, Reitz G, Horneck G (2007a) DNA bipyrimidine photoproduct repair and transcriptional response of UV-C irradiated Bacillus subtilis. Arch Microbiol 188:421–431PubMedCrossRefGoogle Scholar
  67. Moeller R, Stackebrandt E, Reitz G, Berger T, Rettberg P, Doherty AJ, Horneck G, Nicholson WL (2007b) Role of DNA repair by nonhomologous-end joining in Bacillus subtilis spore resistance to extreme dryness, mono- and polychromatic UV, and Ionizing Radiation. J Bacteriol 189:3306–3311PubMedCrossRefGoogle Scholar
  68. Moeller R, Reitz G, Douki T, Cadet J, Horneck G, Stan-Lotter H (2010) UV photoreactions of the extremely haloalkaliphilic euryarchaeon Natronomonas pharaonis. FEMS Microbiol Ecol 73:271–277PubMedGoogle Scholar
  69. Mojzsis SJ, Arrhenius G, McKeegan KD, Harrison TM, Nutman AP, Friend CRL (1996) Evidence for Life on Earth before 3,800 million years ago. Nature 384:55–59PubMedCrossRefGoogle Scholar
  70. Napoli A, Valenti A, Salerno V, Nadal M, Garnier F, Rossi M, Ciaramella M (2004) Reverse gyrase recruitment to DNA after UV light irradiation in Sulfolobus solfataricus. J Biol Chem 279:33192–33198PubMedCrossRefGoogle Scholar
  71. Newcombe DA, Schuerger AC, Benardini JN, Dickinson D, Tanner R, Venkateswaran K (2005) Survival of spacecraft-associated microorganisms under simulated martian UV irradiation. Appl Environ Microbiol 71:8147–8156PubMedCrossRefGoogle Scholar
  72. Niemira BA, Solomon EB (2005) Sensitivity of planktonic and biofilm-associated Salmonella spp. to ionizing radiation. Appl Environ Microbiol 71:2732–2736PubMedCrossRefGoogle Scholar
  73. Nisbet EG, Sleep NH (2001) The habitat and nature of the early life. Nature 409:1083–1091PubMedCrossRefGoogle Scholar
  74. Osman S, Peeters Z, La Duc MT, Mancinelli R, Ehrenfreund P, Venkateswaran K (2008) Effect of shadowing on survival of Bacteria under conditions simulating the martian atmosphere and UV radiation. Appl Environ Microbiol 74:959–970PubMedCrossRefGoogle Scholar
  75. Paper W, Jahn U, Hohn M, Kronner M, Naether D, Burghardt T, Rachel R, Stetter KO, Huber H (2007) Ignicoccus hospitalis sp. nov., the host of ‘Nanoarchaeum equitans’. Int J Syst Evol Microbiol 57:803–808PubMedCrossRefGoogle Scholar
  76. Peak JG, Peak MJ (1991) Comparison of initial yields of DNA-to-protein crosslinks and single-strand breaks induced in cultured human cells by far- and near-ultraviolet light, blue light and X-rays. Mutat Res 246:187–191PubMedCrossRefGoogle Scholar
  77. Podar M, Anderson I, Makarova KS, Elkins JG, Ivanova N, Wall MA, Lykidis A, Mavromatis K, Sun H, Hudson ME, Chen W, Deciu C, Hutchison D, Eads JR, Anderson A, Fernandes F, Szeto E, Lapidus A, Kyrpides NC, Saier MH Jr, Richardson PM, Rachel R, Huber H, Eisen JA, Koonin EV, Keller M, Stetter KO (2008) A genomic analysis of the archaeal system Ignicoccus hospitalis-Nanoarchaeum equitans. Genome Biol 9:R158PubMedCrossRefGoogle Scholar
  78. Riesenman PJ, Nicholson WL (2000) Role of the spore coat layers in Bacillus subtilis spore resistance to hydrogen peroxide, artificial UV-C, UV-B, and solar UV radiation. Appl Environ Microbiol 66:620–626PubMedCrossRefGoogle Scholar
  79. Riley PA (1994) Free radicals in biology: oxidative stress and the effects of ionizing radiation. Int J Radiat Biol 65:27–33PubMedCrossRefGoogle Scholar
  80. Rimsky S (2004) Structure of the histone-like protein H-NS and its role in regulation and genome superstructure. Curr Opin Microbiol 7:109–114PubMedCrossRefGoogle Scholar
  81. Sandman K, Reeve JN (2006) Archaeal histones and the origin of the histone fold. Curr Opin Microbiol 9:520–525PubMedCrossRefGoogle Scholar
  82. Shahmohammadi HR, Asgarani E, Terato H, Saito T, Ohyama Y, Gekko K, Yamamoto O, Ide H (1998) Protective roles of bacterioruberin and intracellular KCl in the resistance of Halobacterium salinarum against DNA-damaging agents. J Radiat Res 39:251–262PubMedCrossRefGoogle Scholar
  83. Shapiro L, McAdams HH, Losick R (2009) Why and how bacteria localize proteins. Science 326:1225–1228PubMedCrossRefGoogle Scholar
  84. She Q, Singh RK, Confalonieri F, Zivanovic Y, Allard G, Awayez MJ, Chan-Weiher CCY, Clausen IG, Curtis BA, De Moors A, Erauso G, Fletcher C, Gordon PMK, Heikamp-de Jong I, Jeffries AC, Kozera CJ, Medina N, Peng X, Thi-Ngoc HP, Redder P, Schenk ME, Theriault C, Tolstrup N, Charlebois RL, Doolittle WF, Duguet M, Gaasterland T, Garrett RA, Ragan MA, Sensen CW, Van der Oost J (2001) The complete genome of the crenarchaeon Sulfolobus solfataricus P2. Proc Natl Acad Sci USA 98:7835–7840PubMedCrossRefGoogle Scholar
  85. Slieman TA, Nicholson WL (2000) Artificial and solar UV radiation induces strand breaks and cyclobutane pyrimidine dimers in Bacillus subtilis spore DNA. Appl Environ Microbiol 66:199–205PubMedCrossRefGoogle Scholar
  86. Smith KC (1962) Dose dependent decrease of DNA of Bacteria following irradiation with ultraviolet light or with visible light and dye. Biochem Biophys Res Communs 8:157–163CrossRefGoogle Scholar
  87. Stapleton GE, Engel MS (1960) Cultural conditions as determinants of sensitivity of Escherichia coli to damaging agents. J Bacteriol 80:544–551PubMedGoogle Scholar
  88. Stetter KO (1988) Archaeoglobus fulgidus gen. nov., sp. nov.: a new taxon of extremely thermophilic archaebacteria. Syst Appl Microbiol 10:172–173Google Scholar
  89. Stetter KO (1996) Hyperthermophiles in the history of life. Ciba Found Symp 202:1–18PubMedGoogle Scholar
  90. Stoehr R, Waberski A, Voelker H, Tindall B, Thomm M (2001) Hydrogenothermus marinus gen. nov., sp. nov., a novel thermophilic hydrogen-oxidizing bacterium, recognition of Calderobacterium hydrogenophilum as a member of the genus Hydrogenobacter and proposal of the reclassification of Hydrogenobacter acidophilus as Hydrogenobaculum acidophilum gen. nov., comb. nov., in the phylum ‘Hydrogenobacter/Aquifex’. Int J Syst Evol Microbiol 51:1853–1862CrossRefGoogle Scholar
  91. van Noort J, Verbrugge S, Goosen N, Dekker C, Dame RT (2004) Dual architectural roles of HU: formation of flexible hinges and rigid filaments. Proc Natl Acad Sci USA 101:6969–6974PubMedCrossRefGoogle Scholar
  92. Vilain S, Pretorius JM, Theron J, Brözel VS (2009) DNA as an adhesin: Bacillus cereus requires extracellular DNA to form biofilms. Appl Environ Microbiol 75:2861–2868PubMedCrossRefGoogle Scholar
  93. Wardleworth BN, Russell RJM, Bell SD, Taylor GL, White MF (2002) Structure of Alba: an archaeal chromatin protein modulated by acetylation. EMBO J 21:4654–4662PubMedCrossRefGoogle Scholar
  94. Zeikus J, Wolfe R (1972) Methanobacterium thermoautotrophicus sp. n., an anaerobic, autotrophic, extreme thermophile. J Bacteriol 109:707–713PubMedGoogle Scholar
  95. Zillig W, Stetter KO, Wunderl S, Schulz W, Priess H, Scholz J (1980) The Sulfolobus-“Caldariella” group: taxonomy on the basis of the structure of DNA-dependent RNA polymerases. Arch Microbiol 125:259–269CrossRefGoogle Scholar
  96. Zillig W, Stetter KO, Schaefer W, Janekovic D, Wunderl S, Holz J, Palm P (1981) Thermoproteales: a novel type of extremely thermoacidophilic anaerobic archaebacteria isolated from icelandic solfataras. Zentralbl Bakteriol Mikrobiol Hyg I Abt C 2:205–227Google Scholar
  97. Zillig W, Gierl A, Schreiber G, Wunderl S, Janekovic D, Stetter KO, Klenk HP (1983) The archaebacterium Thermofilum pendens represents a novel genus of the thermophilic, anaerobic sulfur respiring Thermoproteales. Syst Appl Microbiol 4:79–87Google Scholar
  98. ZoBell CE (1941) Studies on marine bacteria. The cultural requirements of heterotrophic aerobes. J Mar Res 4:42–75Google Scholar
  99. Zolghadr B, Klingl A, Koerdt A, Driessen AJ, Rachel R, Albers SV (2010) Appendage-mediated surface adherence of Sulfolobus solfataricus. J Bacteriol 192:104–110PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Kristina Beblo
    • 1
    • 2
    Email author
  • Thierry Douki
    • 3
  • Gottfried Schmalz
    • 4
  • Reinhard Rachel
    • 5
  • Reinhard Wirth
    • 2
  • Harald Huber
    • 2
  • Günther Reitz
    • 1
  • Petra Rettberg
    • 1
  1. 1.Radiation Biology Division, Institute of Aerospace MedicineGerman Aerospace Center (DLR e.V.)CologneGermany
  2. 2.Institute for Microbiology and Archaea Center, Faculty of Biology and Preclinical MedicineUniversity RegensburgRegensburgGermany
  3. 3.Laboratoire “Lésions des Acides Nucléiques”, Service de Chimie Inorganique et Biologique, CEA/DSM/Département de Recherche Fondamentale sur la Matière CondenséeCEA-GrenobleGrenobleFrance
  4. 4.Department of Operative Dentistry and PeriodontologyRegensburg University ClinicsRegensburgGermany
  5. 5.Center for Electron Microscopy, Faculty of Biology and Preclinical MedicineUniversity RegensburgRegensburgGermany

Personalised recommendations