Advertisement

Archives of Microbiology

, Volume 193, Issue 5, pp 351–363 | Cite as

Modulation of a thermoregulated type VI secretion system by AHL-dependent Quorum Sensing in Yersinia pseudotuberculosis

  • Weipeng Zhang
  • Shengjuan Xu
  • Jing Li
  • Xihui Shen
  • Yao Wang
  • Zhiming Yuan
Original Paper

Abstract

The type VI secretion system (T6SS) is a novel secretion system found in many Gram-negative bacterial pathogens, which appears to be tightly regulated by different regulatory mechanisms. In the present study, we identified 4 T6SS clusters in Yersinia pseudotuberculosis and demonstrated that they were differentially thermoregulated. Among them, T6SS4 was preferentially expressed at 26°C, and its expression was growth phase dependent and subject to quorum sensing regulation. Both YpsI and YtbI AHL synthases contributed to the positive regulation of T6SS4, whereas YpsI synthase played the major role as T6SS4 expression was reduced strongly in the ypsI mutant strain but weakly in the ytbI mutant strain. Moreover, we provided evidence that exogenous addition of different synthetic AHLs complemented T6SS4 expression in different efficiencies in an ypsIytbI double mutant strain, suggesting C6-HSL had an antagonistic effect on T6SS4 expression. This is the first study demonstrating that the expression of T6SS is precisely regulated by temperature, growth phase, and AHL-dependent quorum sensing systems in Y. pseudotuberculosis.

Keywords

Yersinia pseudotuberculosis Type VI secretion system Quorum sensing N-acylhomoserine lactones 

Notes

Acknowledgments

We are indebted to Paul Williams, Miguel Cámara, and Steve Atkinson, at the University of Nottingham, for their technical assistance and for providing valuable reagents. We thank Stephen C. Winans at Cornell University for kindly providing AHL signal molecular producer E. coli DH5α(pJZ365). We would also like to thank Dr. Simon Rayner for helpful comments and suggestions. This work was funded by grants from the National Natural Science Foundation of China (Grants No. 30570020 and 30770026).

Supplementary material

203_2011_680_MOESM1_ESM.pdf (148 kb)
Supplementary material 1 (PDF 147 kb)

References

  1. Antunes LC, Ferreira RB, Lostroh CP, Greenberg EP (2008) A mutational analysis defines Vibrio fischeri LuxR binding sites. J Bacteriol 190:4392–4397PubMedCrossRefGoogle Scholar
  2. Atkinson S, Throup JP, Stewart GS, Williams P (1999) A hierarchical quorum-sensing system in Yersinia pseudotuberculosis is involved in the regulation of motility and clumping. Mol Microbiol 33:1267–1277PubMedCrossRefGoogle Scholar
  3. Atkinson S, Chang CY, Patrick HL, Buckley CM, Wang Y, Sockett RE, Cámara M, Williams P (2008) Functional interplay between the Yersinia pseudotuberculosis YpsRI and YtbRI quorum sensing systems modulates swimming motility by controlling expression of flhDC and fliA. Mol Microbiol 69:137–151PubMedCrossRefGoogle Scholar
  4. Bartels FW, McIntosh M, Fuhrmann A, Metzendorf C, Plattner P, Sewald N, Anselmetti D, Ros R, Becker A (2007) Effector-stimulated single molecule protein-DNA interactions of a quorum-sensing system in Sinorhizobium meliloti. Biophys J 92:4391–4400PubMedCrossRefGoogle Scholar
  5. Bingle L, Bailey C, Pallen M (2008) Type VI secretion: a beginner’s guide. Curr Opin Microbiol 11:3–8PubMedCrossRefGoogle Scholar
  6. Blondel CJ, Jiménez JC, Contreras I, Santiviago CA (2009) Comparative genomic analysis uncover 3 novel loci encoding type six secretion systems differentially distributed in Salmonella serotypes. BMC Genomics 10:354PubMedCrossRefGoogle Scholar
  7. Boyer F, Fichant G, Berthod J, Vandenbrouck Y, Attree I (2009) Dissecting the bacterial type VI secretion system by a genome wide in silico analysis: what can be learned from available microbial genomic resources? BMC Genomics 10:104PubMedCrossRefGoogle Scholar
  8. Cascales E (2008) The type VI secretion toolkit. EMBO Rep. 9:735–741PubMedCrossRefGoogle Scholar
  9. Cathelyn JS, Crosby SD, Lathem WW, Goldman WE, Miller VL (2006) RovA, a global regulator of Yersinia pestis, specifically required for bubonic plague. Proc Natl Acad Sci U S A 103:13514–13519PubMedCrossRefGoogle Scholar
  10. Ding L, Wang Y, Hu Y, Atkinson S, Williams P, Chen S (2009) Functional characterization of FlgM in the regulation of flagellar synthesis and motility in Yersinia pseudotuberculosis. Microbiology 155:1890–1900PubMedCrossRefGoogle Scholar
  11. Dudley E, Thomson N, Parkhill J, Morin N, Nataro J (2006) Proteomic and microarray characterization of the AggR regulon identifies a pheU pathogenicity island in enteroaggregative E. coli. Mol Microbiol 61:1267–1282PubMedCrossRefGoogle Scholar
  12. Filloux A, Hachani A, Bleves S (2008) The bacterial type VI secretion machine: yet another player for protein transport across membranes. Microbiology 154:1570–1583PubMedCrossRefGoogle Scholar
  13. Fuqua C, Greenberg EP (2002) Listening in on bacteria: acyl-homoserine lactone signalling. Nat Rev Mol Cell Biol 3:685–695PubMedCrossRefGoogle Scholar
  14. Gelhaus HC, Rozak DA, Nierman WC, Chen D, Varga JJ, Zadeh M, Ulrich RL, Adamovicz JJ (2009) Exogenous Yersinia pestis quorum sensing molecules N-octanoyl-homoserine lactone and N-(3-oxooctanoyl)-homoserine lactone regulate the LcrV virulence factor. Microb Pathog 46:283–287PubMedCrossRefGoogle Scholar
  15. Han Y, Zhou D, Pang X, Song Y, Zhang L, Bao J, Tong Z, Wang J, Guo Z, Zhai J, Du Z, Wang X, Zhang X, Wang J, Huang P, Yang R (2004) Microarray analysis of temperature-induced transcriptome of Yersinia pestis. Microbiol Immunol 48:791–805PubMedGoogle Scholar
  16. Higuchi R, Krummel B, Saiki RK (1988) A general method of in vitro preparation and specific mutagenesis of DNA fragments: study of protein and DNA interactions. Nucleic Acids Res 16:7351–7367PubMedCrossRefGoogle Scholar
  17. Hood RD, Singh P, Hsu F, Güvener T, Carl MA, Trinidad RR, Silverman JM, Ohlson BB, Hicks KG, Plemel RL, Li M, Schwarz S, Wang WY, Merz AJ, Goodlett DR, Mougous JD (2010) A type VI secretion system of Pseudomonas aeruginosa targets a toxin to bacteria. Cell Host Microbe 7(1):25–37PubMedCrossRefGoogle Scholar
  18. Ishikawa T, Rompikuntal PK, Lindmark B, Milton DL, Wai SN (2009) Quorum sensing regulation of the two hcp alleles in Vibrio cholerae O1 strains. PLoS One 24:e6734CrossRefGoogle Scholar
  19. Karlinsey JE, Tanaka S, Bettenworth V, Yamaguchi S, Boos W, Aizawa SI, Hughes KT (2000) Completion of the hook-basal body complex of the Salmonella typhimurium flagellum is coupled to FlgM secretion and fliC transcription. Mol Microbiol 37:1220–1231PubMedCrossRefGoogle Scholar
  20. Khajanchi BK, Sha J, Kozlova EV, Erova TE, Suarez G, Sierra JC, Popov VL, Horneman AJ, Chopra AK (2009) N-acylhomoserine lactones involved in quorum sensing control the type VI secretion system, biofilm formation, protease production, and in vivo virulence in a clinical isolate of Aeromonas hydrophila. Microbiology 155:3518–3531PubMedCrossRefGoogle Scholar
  21. Konkel ME, Tilly K (2000) Temperature-regulated expression of bacterial virulence genes. Microbes Infect 2:157–166PubMedCrossRefGoogle Scholar
  22. Lazdunski AM, Ventre I, Sturgis JN (2004) Regulatory circuits and communication in Gram-negative bacteria. Nat Rev Microbiol 2:581–592PubMedCrossRefGoogle Scholar
  23. Lesic B, Starkey M, He J, Hazan R, Rahme LG (2009) Quorum sensing differentially regulates Pseudomonas aeruginosa type VI secretion locus I and homologous loci II and III, which are required for pathogenesis. Microbiology 155:2845–2855PubMedCrossRefGoogle Scholar
  24. Liu H, Coulthurst SJ, Pritchard L, Hedley PE, Ravensdale M, Humphris S, Burr T, Takle G, Brurberg MB, Birch PR, Salmond GP, Toth IK (2008) Quorum sensing coordinates brute force and stealth modes of infection in the plant pathogen Pectobacterium atrosepticum. PLoS Pathog 4:e1000093PubMedCrossRefGoogle Scholar
  25. Lumjiaktase P, Diggle SP, Loprasert S, Tungpradabkul S, Daykin M, Cámara M, Williams P, Kunakorn M (2006) Quorum sensing regulates dpsA and the oxidative stress response in Burkholderia pseudomallei. Microbiology 152:3651–3659PubMedCrossRefGoogle Scholar
  26. McClean KH, Winson MK, Fish L, Taylor A, Chhabra SR, Camara M, Daykin M, Lamb JH, Swift S, Bycroft BW, Stewart GS, Williams P (1997) Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiology 143:3703–3711PubMedCrossRefGoogle Scholar
  27. Miller JH (1992) A short course in bacterial genetics: a laboratory manual and handbook for Escherichia coli and related bacteria. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  28. Mougous JD, Cuff ME, Raunser S, Shen A, Zhou M, Gifford CA, Goodman AL, Joachimiak G, Ordoñez CL, Lory S, Walz T, Joachimiak A, Mekalanos JJ (2006) A virulence locus of Pseudomonas aeruginosa encodes a protein secretion apparatus. Science 312:1526–1530PubMedCrossRefGoogle Scholar
  29. Mougous JD, Gifford CA, Ramsdell TL, Mekalanos JJ (2007) Threonine phosphorylation post-translationally regulates protein secretion in Pseudomonas aeruginosa. Nat Cell Biol 9:797–803PubMedCrossRefGoogle Scholar
  30. Ortori CA, Atkinson S, Chhabra SR, Cámara M, Williams P, Barrett DA (2007) Comprehensive profiling of N-acylhomoserine lactones produced by Yersinia pseudotuberculosis using liquid chromatography coupled to hybrid quadrupole-linear ion trap mass spectrometry. Anal Bioanal Chem 387:497–511PubMedCrossRefGoogle Scholar
  31. Passador L, Tucker KD, Guertin KR, Journet MP, Kende AS, Iglewski BH (1996) Functional analysis of the Pseudomonas aeruginosa autoinducer PAI. J Bacteriol 178:5995–6000PubMedGoogle Scholar
  32. Pettersson J, Nordfelth R, Dubinina E, Bergman T, Gustafsson M, Magnusson KE, Wolf-Watz H (1996) Modulation of virulence factor expression by pathogen target cell contact. Science 273:1231–1233PubMedCrossRefGoogle Scholar
  33. Pieper R, Huang ST, Robinson JM, Clark DJ, Alami H, Parmar PP, Perry RD, Fleischmann RD, Peterson SN (2009) Temperature and growth phase influence the outer-membrane proteome and the expression of a type VI secretion system in Yersinia pestis. Microbiology 155:498–512PubMedCrossRefGoogle Scholar
  34. Pukatzki S, Ma AT, Sturtevant D, Krastins B, Sarracino D, Nelson WC, Heidelberg JF, Mekalanos JJ (2006) Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system. Proc Natl Acad Sci U S A 103:1528–1533PubMedCrossRefGoogle Scholar
  35. Pukatzki S, McAuley SB, Miyata ST (2009) The type VI secretion system: translocation of effectors and effector-domains. Curr Opin Microbiol 12:11–17PubMedCrossRefGoogle Scholar
  36. Robinson JB, Telepnev MV, Zudina IV, Bouyer D, Montenieri JA, Bearden SW, Gage KL, Agar SL, Foltz SM, Chauhan S, Chopra AK, Motin VL (2009) Evaluation of a Yersinia pestis mutant impaired in a thermoregulated type VI-like secretion system in flea, macrophage and murine models. Microb Pathog 47:243–251PubMedCrossRefGoogle Scholar
  37. Rosqvist R, Magnusson KE, Wolf-Watz H (1994) Target cell contact triggers expression and polarized transfer of Yersinia YopE cytotoxin into mammalian cells. EMBO J 13:964–972PubMedGoogle Scholar
  38. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  39. Schaefer AL, Hanzelka BL, Eberhard A, Greenberg EP (1996) Quorum sensing in Vibrio fischeri: probing autoinducer-LuxR interactions with autoinducer analogs. J Bacteriol 178:2897–2901PubMedGoogle Scholar
  40. Schell MA, Ulrich RL, Ribot WJ, Brueggemann EE, Hines HB, Chen D, Lipscomb L, Kim HS, Mrázek J, Nierman WC, Deshazer D (2007) Type VI secretion is a major virulence determinant in Burkholderia mallei. Mol Microbiol 64:1466–1485PubMedCrossRefGoogle Scholar
  41. Schwarz S, West TE, Boyer F, Chiang WC, Carl MA, Hood RD, Rohmer L, Tolker-Nielsen T, Skerrett SJ, Mougous JD (2010) Burkholderia type VI secretion systems have distinct roles in eukaryotic and bacterial cell interactions. PLoS Pathog 6(8) pii: e1001068Google Scholar
  42. Suarez G, Sierra JC, Sha J, Wang S, Erova TE, Fadl AA, Foltz SM, Horneman AJ, Chopra AK (2008) Molecular characterization of a functional type VI secretion system from a clinical isolate of Aeromonas hydrophila. Microb Pathog 44:344–361PubMedCrossRefGoogle Scholar
  43. Wang Y, Dai Y, Zhang Y, Hu Y, Yang B, Chen S (2007) Effects of quorum sensing autoinducer degradation gene on virulence and biofilm formation of Pseudomonas aeruginosa. Sci China C Life Sci 50:385–391PubMedCrossRefGoogle Scholar
  44. Weber B, Hasic M, Chen C, Wai SN, Milton DL (2009) Type VI secretion modulates quorum sensing and stress response in Vibrio anguillarum. Environ Microbiol 11:3018–3028PubMedCrossRefGoogle Scholar
  45. White CE, Winans SC (2007) The quorum-sensing transcription factor TraR decodes its DNA binding site by direct contacts with DNA bases and by detection of DNA flexibility. Mol Microbiol 64:245–256PubMedCrossRefGoogle Scholar
  46. Wu HY, Chung PC, Shih HW, Wen SR, Lai EM (2008) Secretome analysis uncovers an Hcp-family protein secreted via a type VI secretion system in Agrobacterium tumefaciens. J Bacteriol 190:2841–2850PubMedCrossRefGoogle Scholar
  47. Zheng J, Tung S, Leung K (2005) Regulation of a type III and a putative secretion system in E. tarda by EsrC is under the control of a two-component system, EsrA-EsrB. Infect Immun 73:4127–4137PubMedCrossRefGoogle Scholar
  48. Zhu J, Beaber JW, Moré MI, Fuqua C, Eberhard A, Winans SC (1998) Analogs of the autoinducer 3-oxooctanoyl-homoserine lactone strongly inhibit activity of the TraR protein of Agrobacterium tumefaciens. J Bacteriol 180:5398–5405PubMedGoogle Scholar
  49. Zhu C, Yu Z, Sun M (2006) Restraining Erwinia virulence by expression of N-acyl homoserine lactonase gene pro3A-aiiA in Bacillus thuringiensis subsp leesis. Biotechnol Bioeng 95:526–532PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Wuhan Institute of VirologyChinese Academy of SciencesWuhanChina
  2. 2.Graduate School of the Chinese Academy of SciencesBeijingChina

Personalised recommendations