Archives of Microbiology

, Volume 193, Issue 4, pp 235–239 | Cite as


  • Roy D. Sleator


The recent rapid expansion in the DNA and protein databases, arising from large-scale genomic and metagenomic sequence projects, has forced significant development in the field of phylogenetics: the study of the evolutionary relatedness of the planet’s inhabitants. Advances in phylogenetic analysis have greatly transformed our view of the landscape of evolutionary biology, transcending the view of the tree of life that has shaped evolutionary theory since Darwinian times. Indeed, modern phylogenetic analysis no longer focuses on the restricted Darwinian–Mendelian model of vertical gene transfer, but must also consider the significant degree of lateral gene transfer, which connects and shapes almost all living things. Herein, I review the major tree-building methods, their strengths, weaknesses and future prospects.


Phylogenetic tree Evolution Neighbour-joining Maximum parsimony Maximum likelihood 


  1. Andersson JO et al (2007) A genomic survey of the fish parasite Spironucleus salmonicida indicates genomic plasticity among diplomonads and significant lateral gene transfer in eukaryote genome evolution. BMC Genomics 8:51PubMedCrossRefGoogle Scholar
  2. Archibald JM, Rogers MB, Toop M, Ishida K, Keeling PJ (2003) Lateral gene transfer and the evolution of plastid-targeted proteins in the secondary plastid-containing alga Bigelowiella natans. Proc Natl Acad Sci USA 100:7678–7683PubMedCrossRefGoogle Scholar
  3. Brocchieri L (2001) Phylogenetic inferences from molecular sequences: review and critique. Theor Popul Biol 59:27–40PubMedCrossRefGoogle Scholar
  4. Charlebois RL, Beiko RG, Ragan MA (2003) Microbial phylogenomics: branching out. Nature 421:217PubMedCrossRefGoogle Scholar
  5. DeBry RW (1992) The consistency of several phylogeny-inference methods under varying evolutionary rates. Mol Biol Evol 9:537–551PubMedGoogle Scholar
  6. Delsuc F, Brinkmann H, Philippe H (2005) Phylogenomics and the reconstruction of the tree of life. Nat Rev Genet 6:361–375PubMedCrossRefGoogle Scholar
  7. Forterre P, Gadelle D (2009) Phylogenomics of DNA topoisomerases: their origin and putative roles in the emergence of modern organisms. Nucleic Acids Res 37:679–692PubMedCrossRefGoogle Scholar
  8. Grishin NV (1999) A novel approach to phylogeny reconstruction from protein sequences. J Mol Evol 48:264–273PubMedCrossRefGoogle Scholar
  9. Gupta RS (2004) The phylogeny and signature sequences characteristics of Fibrobacteres, Chlorobi, and Bacteroidetes. Crit Rev Microbiol 30:123–143PubMedCrossRefGoogle Scholar
  10. Hernandez Fernandez M, Vrba ES (2005) A complete estimate of the phylogenetic relationships in Ruminantia: a dated species-level supertree of the extant ruminants. Biol Rev Camb Philos Soc 80:269–302PubMedCrossRefGoogle Scholar
  11. Hillis DM, Bull JJ, White ME, Badgett MR, Molineux IJ (1992) Experimental phylogenetics: generation of a known phylogeny. Science 255:589–592PubMedCrossRefGoogle Scholar
  12. Huelsenbeck JP, Rannala B (1997) Phylogenetic methods come of age: testing hypotheses in an evolutionary context. Science 276:227–232PubMedCrossRefGoogle Scholar
  13. Karlin S (1998) Global dinucleotide signatures and analysis of genomic heterogeneity. Curr Opin Microbiol 1:598–610PubMedCrossRefGoogle Scholar
  14. Karlin S, Bucher P, Brendel V, Altschul SF (1991) Statistical methods and insights for protein and DNA sequences. Annu Rev Biophys Chem 20:175–203CrossRefGoogle Scholar
  15. Karlin S, Zuker M, Brocchieri L (1994) Measuring residue associations in protein structures. Possible implications for protein folding. J Mol Biol 239:227–248PubMedCrossRefGoogle Scholar
  16. Lawrence JG (2002) Gene transfer in bacteria: speciation without species? Theor Popul Biol 61:449–460PubMedCrossRefGoogle Scholar
  17. Lawrence CE, Altschul SF, Boguski MS, Liu JS, Neuwald AF, Wootton JC (1993) Detecting subtle sequence signals: a Gibbs sampling strategy for multiple alignment. Science 262:208–214PubMedCrossRefGoogle Scholar
  18. Lopez P, Bapteste E (2009) Molecular phylogeny: reconstructing the forest. C R Biol 332:171–182PubMedCrossRefGoogle Scholar
  19. McCormack GP, Clewley JP (2002) The application of molecular phylogenetics to the analysis of viral genome diversity and evolution. Rev Med Virol 12:221–238PubMedCrossRefGoogle Scholar
  20. Pickett KM, Randle CP (2005) Strange bayes indeed: uniform topological priors imply non-uniform clade priors. Mol Phylogenet Evol 34:203–211Google Scholar
  21. Phillips A, Janies D, Wheeler W (2000) Multiple sequence alignment in phylogenetic analysis. Mol Phylogenet Evol 16:317–330PubMedCrossRefGoogle Scholar
  22. Puigbo P, Wolf Y, Koonin E (2009) Search for a ‘Tree of Life’ in the thicket of the phylogenetic forest. J Biol 8:59PubMedCrossRefGoogle Scholar
  23. Sapp J (2007) The structure of microbial evolutionary theory. Stud Hist Philos Biol Biomed Sci 38:780–795PubMedCrossRefGoogle Scholar
  24. Sleator RD (2010) An overview of the processes shaping protein evolution. Sci Prog 93:1–6PubMedCrossRefGoogle Scholar
  25. Sleator RD, Shortall C, Hill C (2008) Metagenomics. Lett Appl Microbiol 47:361–366PubMedCrossRefGoogle Scholar
  26. Snel B, Huynen MA, Dutilh BE (2005) Genome trees and the nature of genome evolution. Annu Rev Microbiol 59:191–209PubMedCrossRefGoogle Scholar
  27. Soltis DE, Soltis PS (2003a) The role of phylogenetics in comparative genetics. Plant Physiol 132:1790–1800PubMedCrossRefGoogle Scholar
  28. Soltis PS, Soltis DE (2003b) Applying the bootstrap in phylogeny reconstruction. Statist Sci 18:256–267CrossRefGoogle Scholar
  29. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599PubMedCrossRefGoogle Scholar
  30. Vingron M, Waterman MS (1994) Sequence alignment and penalty choice. Review of concepts, case studies and implications. J Mol Biol 235:1–12PubMedCrossRefGoogle Scholar
  31. Wheeler D (2002) Selecting the right protein-scoring matrix. Curr Protoc Bioinform, Chap 3, Unit 35Google Scholar
  32. Whelan S, Lio P, Goldman N (2001) Molecular phylogenetics: state-of-the-art methods for looking into the past. Trends Genet 17:262–272PubMedCrossRefGoogle Scholar
  33. Wrobel B (2008) Statistical measures of uncertainty for branches in phylogenetic trees inferred from molecular sequences by using model-based methods. J Appl Genet 49:49–67PubMedCrossRefGoogle Scholar
  34. Yang Z (1996) Phylogenetic analysis using parsimony and likelihood methods. J Mol Evol 42:294–307PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Department of Biological SciencesCork Institute of TechnologyCorkIreland

Personalised recommendations