Archives of Microbiology

, Volume 193, Issue 3, pp 157–168 | Cite as

Horizontal gene transfer amongst probiotic lactic acid bacteria and other intestinal microbiota: what are the possibilities? A review

Mini-Review

Abstract

Probiotics are live cultures, usually lactic acid bacteria, which are ingested to promote a healthy gastrointestinal tract. These organisms require certain traits to survive and compete in this niche, but these traits may be transferred to other microbiota in the gastrointestinal tract (GIT). Similarly, virulence factors from pathogens may be acquired by probiotic strains. Bacteria have developed a plethora of methods to transfer genetic material between strains, species and genera. In this review, the possible factors that may be exchanged and the methods of exchange are discussed.

Keywords

Probiotics Intestinal microbiota Gene transfer 

References

  1. Ammor MS, Belén Flórez A, Mayo B (2007) Antibiotic resistance in non-enterococcal lactic acid bacteria and bifidobacteria. Food Microbiol 24:559–570PubMedGoogle Scholar
  2. Archimbaud C, Shankar N, Forestier C, Baghdayan A, Gilmore MS, Charbonne F, Joly B (2002) In vitro adhesive properties and virulence factors of Enterococcus faecalis strains. Res Microbiol 153:75–80PubMedGoogle Scholar
  3. Arias CA, Cortes L, Murray BE (2007) Chaining in enterococci revisited: correlation between chain length and gelatinase phenotype, and gelE and fsrB genes among clinical isolates of Enterococcus faecalis. J Med Microbiol 56:286–288PubMedGoogle Scholar
  4. Arias CA, Panesso D, Singh KV, Rice LB, Murray BE (2009) Cotransfer of antibiotic resistance genes and a hyl Efm-containing virulence plasmid in Enterococcus faecium. Antimicrob Agents Chemother 53:4240–4246PubMedGoogle Scholar
  5. Arnold DL, Jackson RW, Waterfield NR, Mansfield JW (2007) Evolution of microbial virulence: the benefits of stress. Trends Genet 23:293–300PubMedGoogle Scholar
  6. Bahl MI, Sørensen SJ, Hansen LH, Licht TR (2004) Effect of tetracycline on transfer and establishment of the tetracycline-inducible conjugative transposon Tn916 in the guts of gnotobiotic rats. Appl Environ Microbiol 70:758–764PubMedGoogle Scholar
  7. Begley M, Gahan CGM, Hill C (2005) The interaction between bacteria and bile. FEMS Microbiol Rev 29:625–651PubMedGoogle Scholar
  8. Begley M, Hill C, Gahan CGM (2006) Bile salt hydrolase activity in probiotics. Appl Environ Microbiol 72:1729–1738PubMedGoogle Scholar
  9. Bennik MHJ, Smid EJ, Gorris LGM (1997) Vegetable-associated Pediococcus parvulus produces pediocin PA-1. Appl Environ Microbiol 63:2074–2076PubMedGoogle Scholar
  10. Bernardeau M, Vernoux JP, Henri-Dubernet S, Gueguen M (2008) Safety assessment of dairy microorganisms: the Lactobacillus genus. Int J Food Microbiol 126:278–285PubMedGoogle Scholar
  11. Bleiweis AS, Zimmerman LN (1964) Properties of proteinase from Streptococcus faecalis var. liquefaciens. J Bacteriol 88:653–659PubMedGoogle Scholar
  12. Bolotin A, Quinquis B, Renault P, Sorokin A, Ehrlich SD, Kulakauskas S, Lapidus A, Goltsman E, Mazur M, Pusch GD, Fonstein M, Overbeek R, Kyprides N, Purnelle B, Prozzi D, Ngui K, Masuy D, Hancy F, Burteau S, Boutry M, Delcour J, Goffeau A, Hols P (2004a) Complete sequence and comparative genome analysis of the dairy bacterium Streptococcus thermophilus. Nat Biotechnol 22:1554–1558PubMedGoogle Scholar
  13. Bolotin A, Quinquis B, Sorokin A, Ehrlich DS (2004b) Recent genetic transfer between Lactococcus lactis and enterobacteria. J Bacteriol 186:6671–6677PubMedGoogle Scholar
  14. Bourgeois-Nicolaos N, Moubareck C, Mangeney N, Butel M, Doucet-Populaire F (2006) Comparative study of vanA gene transfer from Enterococcus faecium to Enterococcus faecalis and to Enterococcus faecium in the intestine of mice. FEMS Microbiol Lett 254:27–33PubMedGoogle Scholar
  15. Bron PA, Molenaar D, De Vos WM, Kleerebezem M (2006) DNA micro-array-based identification of bile-responsive genes in Lactobacillus plantarum. J Appl Microbiol 100:728–738PubMedGoogle Scholar
  16. Brusa T, Canzi E, Allievi L, Del Puppo E, Ferrari A (1993) Methanogens in the human intestinal tract and oral cavity. Curr Microbiol 27:261–265Google Scholar
  17. Burrus V, Waldor MK (2004) Shaping bacterial genomes with integrative and conjugative elements. Res Microbiol 155:376–386PubMedGoogle Scholar
  18. Casas IA, Zimmerman LN (1969) Dependence of protease secretion by Streptococcus faecalis var. liquefaciens on arginine and its possible relation to site of synthesis. J Bacteriol 97:307–312PubMedGoogle Scholar
  19. Chow JW, Thal LA, Perri MB, Vazquez JA, Donabedian SM, Clewell DB, Zervos MJ (1993) Plasmid-associated hemolysin and aggregation substance production contribute to virulence in experimental enterococcal endocarditis. Antimicrob Agents Chemother 37:2474–2477PubMedGoogle Scholar
  20. Clewell DB, Francia MV, Flannagan SE, An FY (2002) Enterococcal plasmid transfer: sex pheromones, transfer origins, relaxases, and the Staphylococcus aureus issue. Plasmid 48:193–201PubMedGoogle Scholar
  21. Coburn PS, Baghdayan AS, Dolan GT, Shankar N (2007) Horizontal transfer of virulence genes encoded on the Enterococcus faecalis pathogenicity island. Mol Microbiol 63:530–544PubMedGoogle Scholar
  22. Courvalin P (2006) Vancomycin resistance in gram-positive cocci. Clin Infect Dis 42(Suppl 1):S25–S34Google Scholar
  23. Creti R, Imperi M, Bertuccini L, Fabretti F, Orefici G, Di Rosa R, Baldassarri L (2004) Survey for virulence determinants among Enterococcus faecalis isolated from different sources. J Med Microbiol 53:13–20PubMedGoogle Scholar
  24. Danielsen M, Wind A (2003) Susceptibility of Lactobacillus spp. to antimicrobial agents. Int J Food Microbiol 82:1–11PubMedGoogle Scholar
  25. de Sousa CP (2003) Pathogenicity mechanisms of prokaryotic cells: an evolutionary view. Braz J Infect Dis 7:23–31Google Scholar
  26. Dicks LMT, Botes M (2010) Probiotic lactic acid bacteria in the gastrointestinal tract: health benefits, safety and mode of action. Benef Microbes 1:11–29Google Scholar
  27. Doucet-Populaire F, Trieu-Cuot P, Dosbaa I, Andremont A, Courvalin P (1991) Inducible transfer of conjugative transposon Tn1545 from Enterococcus faecalis to Listeria monocytogenes in the digestive tracts of gnotobiotic mice. Antimicrob Agents Chemother 35:185–187PubMedGoogle Scholar
  28. Doucet-Populaire F, Trieu-Cuot P, Andremont A, Courvalin P (1992) Conjugal transfer of plasmid DNA from Enterococcus faecalis to Escherichia coli in digestive tracts of gnotobiotic mice. Antimicrob Agents Chemother 36:502–504PubMedGoogle Scholar
  29. Dunny GM, Brown BL, Clewell DB (1978) Induced cell aggregation and mating in Streptococcus faecalis: evidence for a bacterial sex pheromone. Proc Natl Acad Sci USA 75:3479–3483PubMedGoogle Scholar
  30. Dunny GM, Zimmerman DL, Tortorello ML (1985) Induction of surface exclusion (entry exclusion) by Streptococcus faecalis sex pheromones: use of monoclonal antibodies to identify an inducible surface antigen involved in the exclusion process. Proc Natl Acad Sci USA 82:8582–8586PubMedGoogle Scholar
  31. Dupont H, Montravers P, Mohler J, Carbon C (1998) Disparate findings on the role of virulence factors of Enterococcus faecalis in mouse and rat models of peritonitis. Infect Immun 66:2570–2575PubMedGoogle Scholar
  32. Dupre I, Zanetti S, Schito AM, Fadda G, Sechi LA (2003) Incidence of virulence determinants in clinical Enterococcus faecium and Enterococcus faecalis isolates collected in Sardinia (Italy). J Med Microbiol 52:491–498PubMedGoogle Scholar
  33. Dussurget O, Cabanes D, Dehoux P, Lecuit M, Buchrieser C, Glaser P, Cossart P (2002) Listeria monocytogenes bile salt hydrolase is a PrfA-regulated virulence factor involved in the intestinal and hepatic phases of listeriosis. Mol Microbiol 45:1095–1106PubMedGoogle Scholar
  34. Duval-Iflah Y, Maisonneuve S, Ouriet M (1998) Effect of fermented milk intake on plasmid transfer and on the persistence of transconjugants in the digestive tract of gnotobiotic mice. Antonie van Leeuwenhoek 73:95–102PubMedGoogle Scholar
  35. Eaton TJ, Gasson MJ (2001) Molecular screening of Enterococcus virulence determinants and potential for genetic exchange between food and medical isolates. Appl Environ Microbiol 67:1628–1635PubMedGoogle Scholar
  36. Elkins CA, Moser SA, Savage DC (2001) Genes encoding bile salt hydrolases and conjugated bile salt transporters in Lactobacillus johnsonii 100–100 and other Lactobacillus species. Microbiology 147:3403–3412PubMedGoogle Scholar
  37. Elsner HA, Sobottka I, Mack D, Claussen M, Laufs R, Wirth R (2000) Virulence factors of Enterococcus faecalis and Enterococcus faecium blood culture isolates. Eur J Clin Microbiol Infect Dis 19:39–42PubMedGoogle Scholar
  38. Finlay BB, Falkow S (1997) Common themes in microbial pathogenicity revisited. Microbiol Mol Biol Rev 61:136–169PubMedGoogle Scholar
  39. Flannagan SE, Clewell DB (2002) Identification and characterization of genes encoding sex pheromone cAM373 activity in Enterococcus faecalis and Staphylococcus aureus. Mol Microbiol 44:803–817PubMedGoogle Scholar
  40. Fluit AC, Schmitz FJ (1999) Class 1 integrons, gene cassettes, mobility, and epidemiology. Eur J Clin Microbiol Infect Dis 18:761–770PubMedGoogle Scholar
  41. Forde A, Fitzgerald GF (1999) Bacteriophage defence systems in lactic acid bacteria. Antonie van Leeuwenhoek 76:89–113PubMedGoogle Scholar
  42. Franz CMAP, Holzapfel WH (2004) The genus Enterococcus: biotechnological and safety issues. In: Salminen S, von Wright A, Ouwehand A (eds) Lactic acid bacteria. Microbiological and functional aspects. Marcel Dekker, Inc., New YorkGoogle Scholar
  43. Girish KS, Kemparaju K (2007) The magic glue hyaluronan and its eraser hyaluronidase: a biological overview. Life Sci 80:1921–1943PubMedGoogle Scholar
  44. Godde JS, Bickerton A (2006) The repetitive DNA elements called CRISPRs and their associated genes: evidence of horizontal transfer among prokaryotes. J Mol Evol 62:718–729PubMedGoogle Scholar
  45. Grutter FH, Zimmerman LN (1955) A proteolytic enzyme of Streptococcus zymogenes. J Bacteriol 69:728–732PubMedGoogle Scholar
  46. Gruzza M, Langella P, Duval-Iflah Y, Ducluzeau R (1993) Gene transfer from engineered Lactococcus lactis strains to Enterococcus faecalis in the digestive tract of gnotobiotic mice. Microb Releases 2:121–125PubMedGoogle Scholar
  47. Gruzza M, Fons M, Ouriet MF, Duval-Iflah Y, Ducluzeau R (1994) Study of gene transfer in vitro and in the digestive tract of gnotobiotic mice from Lactococcus lactis strains to various strains belonging to human intestinal flora. Microb Releases 2:183–189PubMedGoogle Scholar
  48. Guédon G, Bourgoin F, Decaris B (1998) Does gene horizontal transfer occur in lactic acid bacteria co-cultures? Lait 78:53–58Google Scholar
  49. Gueimonde M, Salminen S (2004) Methods of analyzing gut microbiota. In: Salminen S, von Wright A, Ouwehand A (eds) Lactic acid bacteria. Microbiological and functional aspects. Marcel Dekker, Inc., New YorkGoogle Scholar
  50. Haas W, Shepard BD, Gilmore MS (2002) Two-component regulator of Enterococcus faecalis cytolysin responds to quorum-sensing autoinduction. Nature 415:84–87PubMedGoogle Scholar
  51. Hall AE, Gorovits EL, Syribeys PJ, Domanski PJ, Ames BR, Chang CY, Vernachio JH, Patti JM, Hutchins JT (2007) Monoclonal antibodies recognizing the Enterococcus faecalis collagen-binding MSCRAMM Ace: conditional expression and binding analysis. Microb Pathog 43:55–66PubMedGoogle Scholar
  52. Harty DW, Oakey HJ, Patrikakis M, Hume EB, Knox KW (1994) Pathogenic potential of lactobacilli. Int J Food Microbiol 24:179–189PubMedGoogle Scholar
  53. Hassett DJ, Cohen MS (1989) Bacterial adaptation to oxidative stress: implications for pathogenesis and interaction with phagocytic cells. FASEB Journal 3:2574–2582PubMedGoogle Scholar
  54. Heikens E, Bonten MJ, Willems RJ (2007) Enterococcal surface protein Esp is important for biofilm formation of Enterococcus faecium E1162. J Bacteriol 189:8233–8240PubMedGoogle Scholar
  55. Heikens E, Leendertse M, Wijnands LM, van Luit-Asbroek M, Bonten MJM, van der Poll T, Willems RJL (2009) Enterococcal surface protein Esp is not essential for cell adhesion and intestinal colonization of Enterococcus faecium in mice. BMC Microbiol: 9:19Google Scholar
  56. Hendrickx APA, Willems RJL, Bonten MJM, van Schaik W (2009) LPxTG surface proteins of enterococci. Trends Microbiol 17:423–430PubMedGoogle Scholar
  57. Hirt H, Schlievert PM, Dunny GM (2002) In vivo induction of virulence and antibiotic resistance transfer in Enterococcus faecalis mediated by the sex pheromone-sensing system of pCF10. Infect Immun 70:716–723PubMedGoogle Scholar
  58. Holzapfel WH, Haberer P, Snel J, Schillinger U, Huis in’t Veld JH (1998) Overview of gut flora and probiotics. Int J Food Microbiol 41:85–101PubMedGoogle Scholar
  59. Horvath P, Coûté-Monvoisin A, Romero DA, Boyaval P, Fremaux C, Barrangou R (2009) Comparative analysis of CRISPR loci in lactic acid bacteria genomes. Int J Food Microbiol 131:62–70PubMedGoogle Scholar
  60. Hubble TS, Hatton JF, Nallapareddy SR, Murray BE, Gillespie MJ (2003) Influence of Enterococcus faecalis proteases and the collagen-binding protein, Ace, on adhesion to dentin. Oral Microbiol Immunol 18:121–126PubMedGoogle Scholar
  61. Huycke MM, Gilmore MS, Jett BD, Booth JL (1992) Transfer of pheromone-inducible plasmids between Enterococcus faecalis in the Syrian hamster gastrointestinal tract. J Infect Dis 166:1188–1191PubMedGoogle Scholar
  62. Huycke MM, Joyce W, Wack MF (1996) Augmented production of extracellular superoxide by blood isolates of Enterococcus faecalis. J Infect Dis 173:743–746PubMedGoogle Scholar
  63. Hynes WL, Walton SL (2000) Hyaluronidases of Gram-positive bacteria. FEMS Microbiol Lett 183:201–207PubMedGoogle Scholar
  64. Igimi S, Ryu CH, Park SH, Sasaki Y, Sasaki T, Kumagai S (1996) Transfer of conjugative plasmid pAMβ1 from Lactococcus lactis to mouse intestinal bacteria. Lett Appl Microbiol 23:31–35PubMedGoogle Scholar
  65. Ike Y, Hashimoto H, Clewell DB (1984) Hemolysin of Streptococcus faecalis subspecies zymogenes contributes to virulence in mice. Infect Immun 45:528–530PubMedGoogle Scholar
  66. Isenmann R, Schwarz M, Rozdzinski E, Marre R, Beger HG (2000) Aggregation substance promotes colonic mucosal invasion of Enterococcus faecalis in an ex vivo model. J Surg Res 89:132–138PubMedGoogle Scholar
  67. Jacobsen L, Wilcks A, Hammer K, Huys G, Gevers D, Andersen SR (2007) Horizontal transfer of tet(M) and erm(B) resistance plasmids from food strains of Lactobacillus plantarum to Enterococcus faecalis JH2–2 in the gastrointestinal tract of gnotobiotic rats. FEMS Microbiol Ecol 59:158–166PubMedGoogle Scholar
  68. Jett BD, Huycke MM, Gilmore MS (1994) Virulence of enterococci. Clin Microbiol Rev 7:462–478PubMedGoogle Scholar
  69. Joyanes P, Pascual A, Martinez-Martinez L, Hevia A, Perea EJ (2000) In vitro adherence of Enterococcus faecalis and Enterococcus faecium to urinary catheters. Eur J Clin Microbiol Infect Dis 19:124–127PubMedGoogle Scholar
  70. Kanemitsu K, Nishino T, Kunishima H, Okamura N, Takemura H, Yamamoto H, Kaku M (2001) Quantitative determination of gelatinase activity among enterococci. J Microbiol Meth 47:11–16Google Scholar
  71. Kankainen M, Paulin L, Tynkkynen S, Von Ossowski I, Reunanen J, Partanen P, Satokari R, Vesterlund S, Hendrickx APA, Lebeer S, De Keersmaecker SCJ, Vanderleyden J, Hämäläinen T, Laukkanen S, Salovuori N, Ritari J, Alatalo E, Korpela R, Mattila-Sandholm T, Lassig A, Hatakka K, Kinnunen KT, Karjalainen H, Saxelin M, Laakso K, Surakka A, Palva A, Salusjärvi T, Auvinen P, De Vos WM (2009) Comparative genomic analysis of Lactobacillus rhamnosus GG reveals pili containing a human-mucus binding protein. Proc Natl Acad Sci USA 106:17193–17198PubMedGoogle Scholar
  72. Kayaoglu G, Orstavik D (2004) Virulence factors of Enterococcus faecalis: relationship to endodontic disease. Crit Rev Oral Biol Med 15:308–320PubMedGoogle Scholar
  73. King A, Bathgate T, Phillips I (2002) Erythromycin susceptibility of viridans streptococci from the normal throat flora of patients treated with azithromycin or clarithromycin. Clin Microbiol Infect 8:85–92PubMedGoogle Scholar
  74. Launay A, Ballard SA, Johnson PDR, Grayson ML, Lambert T (2006) Transfer of vancomycin resistance transposon Tn1549 from Clostridium symbiosum to Enterococcus spp. in the gut of gnotobiotic mice. Antimicrob Agents Chemother 50:1054–1062PubMedGoogle Scholar
  75. Lawrence JG (1999) Gene transfer, speciation, and the evolution of bacterial genomes. Curr Opin Microbiol 2:519–523PubMedGoogle Scholar
  76. Lawson RD, Coyle WJ (2010) The noncolonic microbiome: does it really matter? Curr Gastroenterol Rep 12:259–262PubMedGoogle Scholar
  77. Le Marrec C, Hyronimus B, Bressollier P, Verneuil B, Urdaci MC (2000) Biochemical and genetic characterization of coagulin, a new antilisterial bacteriocin in the pediocin family of bacteriocins, produced by Bacillus coagulans I4. Appl Environ Microbiol 66:5213–5220PubMedGoogle Scholar
  78. Licht TR, Laugesen D, Jensen LB, Jacobsen BL (2002) Transfer of the pheromone-inducible plasmid pCF10 among Enterococcus faecalis microorganisms colonizing the intestine of mini-pigs. Appl Environ Microbiol 68:187–193PubMedGoogle Scholar
  79. Lim S, Tanimoto K, Tomita H, Ike Y (2006) Pheromone-responsive conjugative vancomycin resistance plasmids in Enterococcus faecalis isolates from humans and chicken feces. Appl Environ Microbiol 72:6544–6553PubMedGoogle Scholar
  80. Lopes MDFS, Simões AP, Tenreiro R, Marques JJF, Crespo MTB (2006) Activity and expression of a virulence factor, gelatinase, in dairy enterococci. Int J Food Microbiol 112:208–214Google Scholar
  81. Macovei L, Zurek L (2006) Ecology of antibiotic resistance genes: characterization of enterococci from houseflies collected in food settings. Appl Environ Microbiol 72:4028–4035PubMedGoogle Scholar
  82. Mahillon J, Chandler M (1998) Insertion sequences. Microbiol Mol Biol Rev 62:725–774PubMedGoogle Scholar
  83. Maisonneuve S, Ouriet MF, Duval-Iflah Y (2001) Comparison of yoghurt, heat treated yoghurt, milk and lactose effects on plasmid dissemination in gnotobiotic mice. Antonie Van Leeuwenhoek 79:199–207PubMedGoogle Scholar
  84. Majewski J, Zawadzki P, Pickerill P, Cohan FM, Dowson CG (2000) Barriers to genetic exchange between bacterial species: Streptococcus pneumoniae transformation. J Bacteriol 182:1016–1023PubMedGoogle Scholar
  85. Makarova KS, Koonin EV (2007) Evolutionary genomics of lactic acid bacteria. J Bacteriol 189:1199–1208PubMedGoogle Scholar
  86. Makarova K, Slesarev A, Wolf Y, Sorokin A, Mirkin B, Koonin E, Pavlov A, Pavlova N, Karamychev V, Polouchine M, Shakhova V, Grigoriev I, Lou Y, Rohksar D, Lucas S, Huang K, Goodstein DM, Hawkins T, Plengvidhya V, Welker D, Hughes J, Goh Y, Benson A, Baldwin K, Lee J, Díaz-Muñiz I, Dosti B, Smeianov V, Wechter W, Barabote R, Lorca G, Altermann E, Barrangou R, Ganesan B, Xie Y, Rawsthorne H, Tamir D, Parker C, Breidt F, Broadbent J, Hutkins R, O’Sullivan D, Steele J, Unlu G, Saier M, Klaenhammer T, Richardson P, Kozyavkin S, Weimer B, Mills D (2006) Comparative genomics of the lactic acid bacteria. Proc Natl Acad Sci USA 103:15611–15616PubMedGoogle Scholar
  87. Makinen P, Clewell DB, An F, Makinen KK (1989) Purification and substrate specificity of a strongly hydrophobic extracellular metalloendopeptidase (‘gelatinase’) from Streptococcus faecalis (strain 0G1–10). J Biol Chem 264:3325–3334PubMedGoogle Scholar
  88. Maragkoudakis PA, Zoumpopoulou G, Miaris C, Kalantzopoulos G, Pot B, Tsakalidou E (2006) Probiotic potential of Lactobacillus strains isolated from dairy products. Int Dairy J 16:189–199Google Scholar
  89. Mater DDG, Langella P, Corthier G, Flores MJ (2005) Evidence of vancomycin resistance gene transfer between enterococci of human origin in the gut of mice harbouring human microbiota. J Antimicrob Chemother 56:975–978PubMedGoogle Scholar
  90. Mater DDG, Langella P, Corthier G, Flores MJ (2008) A probiotic Lactobacillus strain can acquire vancomycin resistance during digestive transit in mice. J Mol Microbiol Biotechnol 14:123–127PubMedGoogle Scholar
  91. Mathur S, Singh R (2005) Antibiotic resistance in food lactic acid bacteria—a review. Int J Food Microbiol 105:281–295PubMedGoogle Scholar
  92. Mattila-Sandholm T, Mättö J, Saarela M (1999) Lactic acid bacteria with health claims—interactions and interference with gastrointestinal flora. Int Dairy J 9:25–35Google Scholar
  93. McAuliffe O, Cano RJ, Klaenhammer TR (2005) Genetic analysis of two bile salt hydrolase activities in Lactobacillus acidophilus NCFM. Appl Environ Microbiol 71:4925–4929PubMedGoogle Scholar
  94. Miller KW, Ray P, Steinmetz T, Hanekarnp T, Ray B (2005) Gene organization and sequences of pediocin AcH/PA-1 production operons in Pediococcus and Lactobacillus plasmids. Lett Appl Microbiol 40:56–62PubMedGoogle Scholar
  95. Mojica FJM, Díez-Villaseñor C, Soria E, Juez G (2000) Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria. Mol Microbiol 36:244–246PubMedGoogle Scholar
  96. Mora D, Fortina MG, Parini C, Manachini PL (2000) PCR-mediated site-directed mutagenesis on pedB gene and HaeIII restriction as a rapid tool for discrimination among pediocin AcH/PA-1 producer strains. Food Microbiol 17:415–420Google Scholar
  97. Morelli L, Sarra PG, Bottazzi V (1988) In vivo transfer of pAMβ1 from Lactobacillus reuteri to Enterococcus faecalis. J Appl Bacteriol 65:371–375PubMedGoogle Scholar
  98. Morelli L, Vogensen FK, von Wright A (2004) Genetics of lactic acid bacteria. In: Salminen S, von Wright A, Ouwehand A (eds) Lactic acid bacteria. Microbiological and functional aspects. Marcel Dekker, Inc., New YorkGoogle Scholar
  99. Moubareck C, Bourgeois N, Courvalin P, Doucet-Populaire F (2003) Multiple antibiotic resistance gene transfer from animal to human enterococci in the digestive tract of gnotobiotic mice. Antimicrob Agents Chemother 47:2993–2996PubMedGoogle Scholar
  100. Mundy LM, Sahm DF, Gilmore M (2000) Relationships between enterococcal virulence and antimicrobial resistance. Clin Microbiol Rev 13:513–522PubMedGoogle Scholar
  101. Murray BE (1990) The life and times of the Enterococcus. Clin Microbiol Rev 3:46–65PubMedGoogle Scholar
  102. Navarre WW, Schneewind O (1999) Surface proteins of gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol Mol Biol Rev 63:174–229PubMedGoogle Scholar
  103. Nicolas P, Bessières P, Ehrlich SD, Maguin E, van de Guchte M (2007) Extensive horizontal transfer of core genome genes between two Lactobacillus species found in the gastrointestinal tract. BMC Evol Biol 7:141–154PubMedGoogle Scholar
  104. Nicoloff H, Bringel F (2003) ISLpl1 Is a Functional IS30-Related Insertion Element in Lactobacillus plantarum that Is Also Found in Other Lactic Acid Bacteria. Appl Environ Microbiol 69:6032–6040PubMedGoogle Scholar
  105. Ochman H, Lawrence JG, Groisman EA (2000) Lateral gene transfer and the nature of bacterial innovation. Nature 405:299–304PubMedGoogle Scholar
  106. Pecharki D, Petersen FC, Scheie AA (2008) Role of hyaluronidase in Streptococcus intermedius biofilm. Microbiology 154:932–938PubMedGoogle Scholar
  107. Pfeiler EA, Klaenhammer TR (2007) The genomics of lactic acid bacteria. Trends Microbiol 15:546–553PubMedGoogle Scholar
  108. Qin X, Singh KV, Weinstock GM, Murray BE (2001) Characterization of fsr, a regulator controlling expression of gelatinase and serine protease in Enterococcus faecalis OG1RF. J Bacteriol 183:3372–3382PubMedGoogle Scholar
  109. Rice LB, Carias L, Rudin S, Vael C, Goossens H, Konstabel C, Klare I, Nallapareddy SR, Huang W, Murray BE (2003) A potential virulence gene, hyl Efm, predominates in Enterococcus faecium of clinical origin. J Infect Dis 187:508–512PubMedGoogle Scholar
  110. Salminen S, Playne M, Lee YK (2004) Successful probiotic lactobacilli: Human studies on probiotic efficacy. In: Shortt C, O’Brien J (eds) Handbook of functional dairy products. CRC Press, New YorkGoogle Scholar
  111. Salyers AA, Gupta A, Wang Y (2004) Human intestinal bacteria as reservoirs for antibiotic resistance genes. Trends Microbiol 12:412–416PubMedGoogle Scholar
  112. Schmidt H, Hensel M (2004) Pathogenicity islands in bacterial pathogenesis. Clin Microbiol Rev 17:14–56PubMedGoogle Scholar
  113. Scott KP (2002) The role of conjugative transposons in spreading antibiotic resistance between bacteria that inhabit the gastrointestinal tract. Cell Mol Life Sci 59:2071–2082PubMedGoogle Scholar
  114. Shah NP (2007) Functional cultures and health benefits. Int Dairy J 17:1262–1277Google Scholar
  115. Shankar V, Baghdayan AS, Huycke MM, Lindahl G, Gilmore MS (1999) Infection-derived Enterococcus faecalis strains are enriched in esp, a gene encoding a novel surface protein. Infect Immun 67:193–200PubMedGoogle Scholar
  116. Shankar N, Coburn P, Pilla C, Haas W, Gilmore M (2004) Enterococcal cytolysin: activities and association with other virulence traits in a pathogenicity island. Int J Med Microbiol 293:609–618PubMedGoogle Scholar
  117. Shugart LR, Beck RW (1964) Purification and activity of proteinase of Streptococcus faecalis Var. liquefaciens. J Bacteriol 88:586–590PubMedGoogle Scholar
  118. Siezen RJ, Renckens B, Van Swam I, Peters S, Van Kranenburg R, Kleerebezem M, De Vos WM (2005) Complete sequences of four plasmids of Lactococcus lactis subsp. cremoris SK11 reveal extensive adaptation to the dairy environment. Appl Environ Microbiol 71:8371–8382PubMedGoogle Scholar
  119. Sillanpää J, Nallapareddy SR, Prakash VP, Qin X, Höök M, Weinstock GM, Murray BE (2008) Identification and phenotypic characterization of a second collagen adhesin, Scm, and genome-based identification and analysis of 13 other predicted MSCRAMMs, including four distinct pilus loci, in Enterococcus faecium. Microbiology 154:3199–3211PubMedGoogle Scholar
  120. Sillanpää J, Nallapareddy SR, Houston J, Ganesh VK, Bourgkogne A, Singh KV, Murray BE, Höök M (2009a) A family of fibrinogen-binding MSCRAMMs from Enterococcus faecalis. Microbiology 155:2390–2400PubMedGoogle Scholar
  121. Sillanpää J, Prakash VP, Nallapareddy SR, Murray BE (2009b) Distribution of genes encoding MSCRAMMs and pili in clinical and natural populations of Enterococcus faecium. J Clin Microbiol 47:896–901PubMedGoogle Scholar
  122. Slover CM (2008) Lactobacillus: a Review. Clin Microbiol Newsl 30:23–27Google Scholar
  123. Sorek R, Zhu Y, Creevey CJ, Francino MP, Bork P, Rubin EM (2007) Genome-wide experimental determination of barriers to horizontal gene transfer. Science 318:1449–1452PubMedGoogle Scholar
  124. Sørensen SJ, Bailey M, Hansen LH, Kroer N, Wuertz S (2005) Studying plasmid horizontal transfer in situ: a critical review. Nat Rev Microbiol 3:700–710PubMedGoogle Scholar
  125. Starr CR, Engleberg NC (2006) Role of hyaluronidase in subcutaneous spread and growth of group A streptococcus. Infect Immun 74:40–48PubMedGoogle Scholar
  126. Su YA, Sulavik MC, He P, Makinen KK, Makinen PL, Fiedler S, Wirth R, Clewell DB (1991) Nucleotide sequence of the gelatinase gene (gelE) from Enterococcus faecalis subsp. liquefaciens. Infect Immun 59:415–420PubMedGoogle Scholar
  127. Tamime A (2005) Probiotic dairy products. Blackwell, OxfordGoogle Scholar
  128. Tanaka H, Hashiba H, Kok J, Mierau I (2000) Bile salt hydrolase of Bifidobacterium longum - Biochemical and genetic characterization. Appl Environ Microbiol 66:2502–2512PubMedGoogle Scholar
  129. Teng F, Kawalec M, Weinstock GM, Hryniewicz W, Murray BE (2003) An Enterococcus faecium secreted antigen, SagA, exhibits broad-spectrum binding to extracellular matrix proteins and appears essential for E. faecium growth. Infect Immun 71:5033–5041PubMedGoogle Scholar
  130. Teuber M, Meile L, Schwarz F (1999) Acquired antibiotic resistance in lactic acid bacteria from food. Antonie van Leeuwenhoek 76:115–137PubMedGoogle Scholar
  131. Thomas CM, Nielsen KM (2005) Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nat Rev Microbiol 3:711–721PubMedGoogle Scholar
  132. Tian Y, He X, Torralba M, Yooseph S, Nelson KE, Lux R, McLean JS, Yu G, Shi W (2010) Using DGGE profiling to develop a novel culture medium suitable for oral microbial communities. Mol Oral Microbiol 25:357–367PubMedGoogle Scholar
  133. Todorov SD, Dicks LMT (2009) Bacteriocin production by Pediococcus pentosaceus isolated from marula (Scerocarya birrea). Int J Food Microbiol 132:117–126PubMedGoogle Scholar
  134. Tønjum T, Håvarstein LS, Koomey M, Seeberg E (2004) Transformation and DNA repair: linkage by DNA recombination. Trends Microbiol 12:1–4PubMedGoogle Scholar
  135. Tortorello ML, Dunny GM (1985) Identification of multiple cell surface antigens associated with the sex pheromone response of Streptococcus faecalis. J Bacteriol 162:131–137PubMedGoogle Scholar
  136. Tortorello M, Adsit J, Krug D (1986) Monoclonal antibodies to cell surface antigens involved in sex pheromone induced mating in Streptococcus faecalis. J Gen Microbiol 132:857–864PubMedGoogle Scholar
  137. Van Reenen CA, Chikindas ML, Van Zyl WH, Dicks LMT (2003) Characterization and heterologous expression of a class IIa bacteriocin, plantaricin 423 from Lactobacillus plantarum 423, in Saccharomyces cerevisiae. Int J Food Microbiol 81:29–40PubMedGoogle Scholar
  138. Vankerckhoven V, Huys G, Vancanneyt M, Vael C, Klare I, Romond M, Entenza JM, Moreillon P, Wind RD, Knol J, Wiertz E, Pot B, Vaughan EE, Kahlmeter G, Goossens H (2008) Biosafety assessment of probiotics used for human consumption: recommendations from the EU-PROSAFE project. Trends Food Sci Technol 19:102–114Google Scholar
  139. Vesterlund S, Vankerckhoven V, Saxelin M, Goossens H, Salminen S, Ouwehand AC (2007) Safety assessment of Lactobacillus strains: presence of putative risk factors in faecal, blood and probiotic isolates. Int J Food Microbiol 116:325–331PubMedGoogle Scholar
  140. Yasmin A, Kenny JG, Shankar J, Darby AC, Hall N, Edwards C, Horsburgh MJ (2010) Comparative genomics and transduction potential of Enterococcus faecalis temperate bacteriophages. J Bacteriol 192:1122–1130PubMedGoogle Scholar
  141. Zhang H, DiBaise JK, Zuccolo A, Kudrna D, Braidotti M, Yu Y, Parameswaran P, Crowell MD, Wing R, Rittmann BE, Krajmalnik-Brown R (2009) Human gut microbiota in obesity and after gastric bypass. PNAS 106:2365–2370PubMedGoogle Scholar
  142. Zhou JS, Pillidge CJ, Gopal PK, Gill HS (2005) Antibiotic susceptibility profiles of new probiotic Lactobacillus and Bifidobacterium strains. Int J Food Microbiol 98:211–217PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Department of MicrobiologyUniversity of StellenboschMatieland, StellenboschSouth Africa

Personalised recommendations