Advertisement

Archives of Microbiology

, Volume 193, Issue 2, pp 137–149 | Cite as

Gluconacetobacter diazotrophicus levansucrase is involved in tolerance to NaCl, sucrose and desiccation, and in biofilm formation

  • M. Lourdes Velázquez-Hernández
  • Víctor M. Baizabal-Aguirre
  • Fermín Cruz-Vázquez
  • Mayra J. Trejo-Contreras
  • Luis E. Fuentes-Ramírez
  • Alejandro Bravo-Patiño
  • Marcos Cajero-Juárez
  • Martha P. Chávez-Moctezuma
  • Juan J. Valdez-Alarcón
Original Paper

Abstract

Gluconacetobacter diazotrophicus is a nitrogen-fixing bacterium and endophyte of sugarcane, which expresses levansucrase, a fructosyltransferase exoenzyme with sucrose hydrolytic and levan biosynthetic activities. As a result of their physical properties, the levan can provide protection against stress caused by abiotic or biotic factors and participate in the formation of biofilms. In this study, we investigated the construction and function of a levansucrase-defective mutant of G. diazotrophicus. The lsdA mutant showed a decreased tolerance (65.5%) to 50–150 mM NaCl and a decrease of 89% in 876 mM (30%) sucrose, a reduction (99%) in tolerance to desiccation after 18 h, and a decrease (36.9–58.5%) in the ability to form cell aggregates on abiotic surfaces. Complementation of the mutant with the complete lsdA gene leads to a recovery of the ability to grow on sucrose-containing medium and to form slimy colonies, the ability to form the cell aggregates on abiotic surfaces and the tolerance to NaCl. This report demonstrates the importance of levansucrase in environmental adaptation of G. diazotrophicus under high osmotic stress and in biofilm formation.

Keywords

Levansucrase Osmotic stress Biofilm Diazotroph 

Notes

Acknowledgments

This work was supported with grants from Consejo Nacional de Ciencia y Tecnología—México (No. J31278-B) and from the Coordinación de la Investigación Científica—U.M.S.N.H. to J.J.V.A. M.L.V.H. and F.C.V. were recipients of PhD and MSc scholarships from the Consejo Nacional de Ciencia y Tecnología—México, respectively. The pBB1RMCS-3 plasmid was a kind gift from A. García de los Santos. We are grateful to J.S. Bayuelo-Jiménez for the use of the osmometer and sonicator and J. E. López-Meza for sequencing support.

References

  1. Alexander M (1986) Most probable number method for microbial populations. In: methods of soil analysis: chemical and microbiological properties, 2nd edn. American Society for Agronomy, Madison, WI, pp 815–820Google Scholar
  2. Alexeyev MF, Shokolenko IN, Croughan TP (1995) Improve antibiotic-resistance gene cassettes and omega elements for Escherichia coli vector construction and in vitro deletion/insertion mutagenesis. Gene 160:63–67CrossRefPubMedGoogle Scholar
  3. Alvarez B, Martínez-Drets G (1995) Metabolic characterization of Acetobacter diazotrophicus. Can J Microbiol 41:918–924CrossRefGoogle Scholar
  4. Antoine R, Locht C (1992) Isolation and molecular characterization of a novel broad-host-range plasmid from Bordetella bronchiseptica with sequence similarities to plasmids from gram-positive organisms. Mol Microbiol 6:1785–1799CrossRefPubMedGoogle Scholar
  5. Arrieta J, Hernández L, Coego A, Suárez V, Balmori E, Menéndez C, Petit-Glatron MF, Chambert R, Selman-Housein G (1996) Molecular characterization of the levansucrase gene from the endophytic sugarcane bacterium Acetobacter diazotrophicus SRT4. Microbiology 142:1077–1085CrossRefPubMedGoogle Scholar
  6. Baliga NS, Bonneau R, Facciotti MT, Pan M, Glusman G et al (2004) Genome sequence of Haloarcula marismortui: a halophilic archaeon from the Dead Sea. Genome Res 14:2221–2234CrossRefPubMedGoogle Scholar
  7. Barone JR, Medynets M (2007) Thermally processed levan polymers. Carbohydr Polym 69:554–561CrossRefGoogle Scholar
  8. Bastián F, Rapparini F, Baraldi R, Piccoli P, Bottini R (1999) Inoculation with Acetobacter diazotrophicus increases glucose and fructose content in shoots of Sorghum bicolor (L.) Moench. Symbiosis 27:147–156Google Scholar
  9. Bertalan M, Albano R, Pádua V, Rouws L et al (2009) Complete genome sequence of the sugarcane nitrogen-fixing endophyte Gluconacetobacter diazotrophicus Pal5. BMC Genomics 10:450–466CrossRefPubMedGoogle Scholar
  10. Bezzate S, Aymerich S, Chambert R, Czarnes S, Berge O, Heulin T (2000) Disruption of the Paenibacillus polymyxa levansucrase gene impairs its ability to aggregate soil in the wheat rhizosphere. Environ Microbiol 2:333–342CrossRefPubMedGoogle Scholar
  11. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefPubMedGoogle Scholar
  12. Cavalcante V, Döbereiner J (1988) A new acid-tolerant nitrogen-fixing bacterium associated with sugarcane. Plant Soil 108:23–31CrossRefGoogle Scholar
  13. Daguer JP, Geissmann T, Petit-Glatron MF, Chambert R (2004) Autogenous modulation of the Bacillus subtilis sacBlevByveA levansucrase operon by the levB transcript. Microbiology 150:3669–3679CrossRefPubMedGoogle Scholar
  14. Danese PN, Pratt LA, Kolter R (2000) Exopolysaccharide production is required for development of Escherichia coli K-12 biofilm architecture. J Bacteriol 182:3593–3596CrossRefPubMedGoogle Scholar
  15. Danhorn T, Fuqua C (2007) Biofilm formation by plant-associated bacteria. Annu Rev Micorbiol 61:401–422CrossRefGoogle Scholar
  16. Davey ME, O’Toole GA (2000) Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 64:847–867CrossRefPubMedGoogle Scholar
  17. Deppenmeier U, Ehrenreich A (2009) Physiology of acetic acid bacteria in light of the genome sequence of Gluconobacter oxydans. J Mol Microbiol Biotechnol 16:69–80CrossRefPubMedGoogle Scholar
  18. Dong Z, Canny MJ, McCully ME, Roboredo MR, Fernandez-Cabadilla C, Ortega E, Rodés R (1994) A nitrogen-fixing endophyte of sugarcane stems. A new role for the apoplast. Plant Physiol 105:1139–1147PubMedGoogle Scholar
  19. Dong Z, McCully ME, Canny MJ (1997) Does Acetobacter diazotrophicus live and move in the xylem of sugarcane stems? Anatomical and physiological data. Ann Bot 80:147–158CrossRefGoogle Scholar
  20. Dunne WM (2002) Bacterial adhesion: seen any good biofilms lately? Clin Microbiol Rev 15:155–166CrossRefPubMedGoogle Scholar
  21. Franke-Whittle IH, O’Shea MG, Leonard GJ, Sly LI (2005) Desing, development, and use of molecular primers and probes for the detection of Gluconacetobacter species in the pink sugarcane mealybug. Microb Ecol 50:128–139CrossRefPubMedGoogle Scholar
  22. Geier G, Geider K (1993) Characterization and influence on virulence of the levansucrase gene from the fireblight pathogen Erwinia amylovora. Physiol Mol Plant Pathol 42:387–404CrossRefGoogle Scholar
  23. Gouffi K, Pichereau V, Rolland JP, Thomas D, Bernard T, Blanco C (1998) Sucrose is a nonaccumulated osmoprotectant in Sinorhizobium meliloti. J Bacteriol 180:5044–5051PubMedGoogle Scholar
  24. Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilm: from the natural environment to infectious diseases. Nat Rev Microbiol 2:95–108CrossRefPubMedGoogle Scholar
  25. Hartmann A, Prabhu SR, Galinski EA (1991) Osmotolerance of diazotrophic rhizosphere bacteria. Plant Soil 137:105–109CrossRefGoogle Scholar
  26. Hernández L, Arrieta J, Menéndez C, Vázquez R, Coego A, Suárez V, Selman G, Petit-Glatron MF, Chambert R (1995) Isolation and enzymic properties of levansucrase secreted by Acetobacter diazotrophicus SRT4, a bacterium associated with sugar cane. Biochem J 309:113–118PubMedGoogle Scholar
  27. Hernández L, Sotolongo M, Rosabal Y, Menéndez C, Ramírez R, Caballero-Mellado J, Arrieta J (2000) Structural levansucrase gene (lsdA) constitutes a functional locus conserved in the species Gluconacetobacter diazotrophicus. Arch Microbiol 174:120–124CrossRefPubMedGoogle Scholar
  28. Jiménez-Salgado T, Fuentes-Ramírez LE, Tapia-Hernández A, Mascarua-Esparza MA, Martínez-Romero E, Caballero-Mellado J (1997) Coffea arabica L., a new host plant for Acetobacter diazotrophicus, and isolation of the other nitrogen-fixing acetobacteria. Appl Environ Microbiol 63:3676–3683PubMedGoogle Scholar
  29. Kasapis S, Morris ER, Gross M, Rudolph K (1994) Solution properties of levan polysaccharide from Pseudomonas syringae pv. phaseolicola, and its possible primary role as a blocker of recognition during pathogenesis. Carbohydr Polym 23:55–64CrossRefGoogle Scholar
  30. Koczan JM, McGrath MJ, Zhao Y, Sundin GW (2009) Contribution of Erwinia amylovora exopolysaccharides amylovoran and levan to biofilm formation: implications in pathogenicity. Phytopathology 99:1237–1244Google Scholar
  31. Kovach ME, Elzer PH, Hill SD, Robertson GT, Farris MA, Roop RM II, Peterson KM (1995) Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166:175–176CrossRefPubMedGoogle Scholar
  32. Kunst F, Rapoport G (1995) Salt stress is an environmental signal affecting degradative enzymes in Bacillus subtilis. J Bacteriol 177:2403–2407PubMedGoogle Scholar
  33. Laue H, Schenk A, Li H, Lambertsen L, Neu TR, Molin S, Ullrich MS (2006) Contribution of alginate and levan production to biofilm formation by Pseudomonas syringae. Microbiology 152:2909–2918CrossRefPubMedGoogle Scholar
  34. Lerner A, Castro-Sowinski S, Lerner H, Okon Y, Burdman S (2009) Glycogen phosphorylase is involved in stress endurance and biofilm formation in Azospirillum brasilense Sp7. FEMS Microbiol Lett 300:75–82CrossRefPubMedGoogle Scholar
  35. Li H, Ullrich MS (2001) Characterization and mutational analysis of three allelic lsc genes encoding levansucrase in Pseudomonas syringae. J Bacteriol 183:3282–3292CrossRefPubMedGoogle Scholar
  36. Lombardo MJ, Michalski J, Martinez-Wilson H, Morin C, Hilton T, Osorio CG, Nataro JP, Tacket CO, Camilli A, Kaper JB (2007) An in vivo expression technology screen for Vibrio cholera genes expressed in human volunteers. Proc Natl Acad Sci USA 104:18229–18234CrossRefPubMedGoogle Scholar
  37. Marchuk D, Drumm M, Saulino A, Collins FS (1991) Construction of T-vectors, a rapid and general system for direct cloning of unmodified PCR products. Nucleic Acids Res 19:1154CrossRefPubMedGoogle Scholar
  38. Menéndez C, Hernández L, Banguela A, País J (2004) Functional production and secretion of the Gluconacetobacter diazotrophicus fructose-releasing exo-levanase (LsdB) in Pichia pastoris. Enzyme Microb Technol 34:446–452CrossRefGoogle Scholar
  39. Menéndez C, Banguela A, Caballero-Mellado J, Hernández L (2009) Transcriptional regulation and signal-peptide-dependent secretion of exolevanase (LsdB) in the endophyte Gluconacetobacter diazotrophicus. Appl Environ Microbiol 75:1782–1785CrossRefPubMedGoogle Scholar
  40. Muthukumarasamy R, Revathi G, Seshadri S, Lakshminarasimhan C (2002) Gluconacetobacter diazotrophicus (syn. Acetobacter diazotrophicus), a promising diazotrophic endophyte in tropics. Curr Sci 83:137–145Google Scholar
  41. Ophir T, Gutnick DL (1994) A role for exopolysaccharides in the protection of microorganisms from desiccation. Appl Environ Microbiol 60:740–745PubMedGoogle Scholar
  42. Pelicic V, Reyrat JM, Gicquel B (1996) Expression of the Bacillus subtilis sacB gene confers sucrose sensitivity on mycobacteria. J Bacteriol 178:1197–1199PubMedGoogle Scholar
  43. Pilon-Smits EAH, Ebskamp MJM, Paul MJ, Jeuken MJW, Weisbeek PJ, Smeekens SCM (1995) Improved performance of transgenic fructan-accumulating tobacco under drought stress. Plant Physiol 107:125–130PubMedGoogle Scholar
  44. Pons T, Hernández L, Batista FR, Chinea G (2000) Prediction of a common β-propeller catalytic domain for fructosyltransferases of different origin and substrate specificity. Protein Sci 9:2285–2291CrossRefPubMedGoogle Scholar
  45. Prithiviraj B, Bais HP, Jha AK, Vivanco JM (2005) Staphylococcus aureus pathogenicity on Arabidopsis thaliana is mediated either by a direct effect of salicylic acid on the pathogen or by SA-dependent, NPR1-independent host responses. Plant J 42:417–432CrossRefPubMedGoogle Scholar
  46. Reis VM, Olivares FL, Döbereiner J (1994) Improved methodology for isolation of Acetobacter diazotrophicus and confirmation of its endophytic habitat. World J Microbiol Biotechnol 10:401–405CrossRefGoogle Scholar
  47. Rouws LF, Simões-Araújo JL, Hemerly AS, Baldani JI (2008) Validation of a Tn5 transposon mutagenesis system for Gluconacetobacter diazotrophicus through characterization of a flagellar mutant. Arch Microbiol 189:397–405CrossRefPubMedGoogle Scholar
  48. Rozen R, Bachrach G, Steinberg D (2004) Effect of carbohydrates on fructosyltransferase expression and distribution in Streptococcus mutans GS-5 biofilms. Carbohydr Res 339:2883–2888CrossRefPubMedGoogle Scholar
  49. Russo DM, Williams A, Edwards A, Posadas DM, Finnie C, Dankert M, Downie JA, Zorreguita A (2006) Proteins exported via the PrsD-PrsE type I secretion system and the acidic exopolysaccharide are involved in biofilm formation by Rhizobium leguminosarum. J Bacteriol 188:4474–4486CrossRefPubMedGoogle Scholar
  50. Sambrook J, Russell DW (2001) Preparation of plasmid DNA by alkaline lysis with SDS. In: Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp 1.31–1.42Google Scholar
  51. Saravanan VS, Madhaiyan M, Osborne J, Thangaraju M, Sa TM (2008) Ecological occurrence of Gluconacetobacter diazotrophicus and nitrogen-fixing Acetobacteraceae members: their possible role in plant growth promotion. Microb Ecol 55:130–140CrossRefPubMedGoogle Scholar
  52. Schroeder VA, Michalek SM, Macrina FL (1989) Biochemical characterization and evaluation of virulence of a fructosyltransferase-deficient mutant of Streptococcus mutans V403. Infect Immun 57:3560–3569PubMedGoogle Scholar
  53. Siqueira F, Cardoso R, Oliveira E, Moura M, Quintana VM, Berbert-Molina MA (2009) Glycine betaine enhances growth of nitrogen-fixing bacteria Gluconacetobacter diazotrophicus PAL5 under saline stress conditions. Curr Microbiol 59:593–599CrossRefGoogle Scholar
  54. Stephan MP, Oliveira M, Teixeira KRS, Martinez-Drets G, Döbereiner J (1991) Physiology and dinitrogen fixation of Acetobacter diazotrophicus. FEMS Microbiol Lett 77:67–72CrossRefGoogle Scholar
  55. Stephan MP, Fontaine T, Previato JO, Mendonça-Previato L (1995) Differentiation of capsular polysaccharides from Acetobacter diazotrophicus strains isolated from sugarcane. Microbiol Immunol 39:237–242PubMedGoogle Scholar
  56. Sutherland IW (2001) Biofilm exopolysaccharides: a strong and sticky framework. Microbiology 147:3–9PubMedGoogle Scholar
  57. Támbara Y, Hormaza JV, Pérez C, León A, Arrieta J, Hernández L (1999) Structural analysis and optimised production of fructo-oligosaccharides by levansucrase from Acetobacter diazotrophicus SRT4. Biotechnol Lett 21:117–121CrossRefGoogle Scholar
  58. Tejera NA, Ortega E, González-López J, Lluch C (2003) Effect of some abiotic factors on the biological activity of Gluconacetobacter diazotrophicus. J Appl Microbiol 95:528–535CrossRefPubMedGoogle Scholar
  59. Tejera NA, Ortega E, Rodés R, Lluch C (2004) Influence of carbon and nitrogen sources on growth, nitrogenase activity and carbon metabolism of Gluconacetobacter diazotrophicus. Can J Microbiol 50:745–750CrossRefPubMedGoogle Scholar
  60. Trujillo LE, Arrieta JG, Dafhnis F, García J, Valdés J, Tambara Y, Pérez M, Hernández L (2001) Fructo-oligosaccharides production by the Gluconacetobacter diazotrophicus levansucrase expressed in the methylotrophic yeast Pichia pastoris. Enzyme Microb Technol 28:139–144CrossRefPubMedGoogle Scholar
  61. Trujillo-López A, Camargo-Zendejas O, Salgado-Garciglia R, Cano-Camacho H, Baizabal-Aguirre VM, Ochoa-Zarzosa A, López-Meza JE, Valdéz-Alarcón JJ (2006) Association of Gluconacetobacter diazotrophicus with roots of common bean (Phaseolus vulgaris) seedlings is promoted in vitro by UV light. Can J Bot 84:321–327 Erratum Can J Bot 84:514CrossRefGoogle Scholar
  62. Ureta A, Alvarez B, Ramón A, Vera MA, Martínez-Drets G (1995) Identification of Acetobacter diazotrophicus, Herbaspirillum seropedicae and Herbaspirillum rubrisubalbicans using biochemical and genetic criteria. Plant Soil 172:271–277CrossRefGoogle Scholar
  63. Velázquez-Hernández ML, Baizabal-Aguirre VM, Bravo-Patiño A, Cajero-Juárez M, Chavéz-Moctezuma MP, Valdez-Alarcón JJ (2009) Microbial fructosyltransferases and the role of fructans. J Appl Microbiol 106:1763–1778CrossRefPubMedGoogle Scholar
  64. Vereyken IJ, Chupin V, Hoekstra FA, Smeekens SC, Kruijff B (2003) The effect of fructan on membrane lipid organization and dynamics in the dry state. Biophys J 84:3759–3766CrossRefPubMedGoogle Scholar
  65. Vijn I, Smeekens S (1999) Fructan: more than a reserve carbohydrate? Plant Physiol 120:351–360CrossRefPubMedGoogle Scholar
  66. Wood JM (2007) Bacterial osmosensing transporters. Methods Enzymol 428:77–107CrossRefPubMedGoogle Scholar
  67. Yamada Y, Yukphan P (2008) Genera and species in acetic acid bacteria. Int J Food Microbiol 125:15–24CrossRefPubMedGoogle Scholar
  68. Youssef HH, Fayez M, Monib M, Hegazi N (2004) Gluconacetobacter diazotrophicus: a natural endophytic diazotroph of Nile Delta sugarcane capable of establishing an endophytic association with wheat. Biol Fertil Soils 39:391–397CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • M. Lourdes Velázquez-Hernández
    • 1
  • Víctor M. Baizabal-Aguirre
    • 1
  • Fermín Cruz-Vázquez
    • 2
    • 5
  • Mayra J. Trejo-Contreras
    • 1
  • Luis E. Fuentes-Ramírez
    • 2
  • Alejandro Bravo-Patiño
    • 1
  • Marcos Cajero-Juárez
    • 1
  • Martha P. Chávez-Moctezuma
    • 3
  • Juan J. Valdez-Alarcón
    • 1
    • 4
  1. 1.Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y ZootecniaUniversidad Michoacana de San Nicolás de HidalgoMichoacánMéxico
  2. 2.Instituto de CienciasBenemérita Universidad Autónoma de PueblaPueblaMéxico
  3. 3.Instituto de Investigaciones Químico-BiológicasUniversidad Michoacana de San Nicolás de HidalgoMichoacánMéxico
  4. 4.TarímbaroMéxico
  5. 5.Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones BiomédicasUniversidad Nacional Autónoma de MéxicoDistrito FederalMéxico

Personalised recommendations