Archives of Microbiology

, Volume 192, Issue 11, pp 909–918 | Cite as

Non-enzymatic roles for the URE2 glutathione S-transferase in the response of Saccharomyces cerevisiae to arsenic

  • Tatina T. Todorova
  • Anna V. Kujumdzieva
  • Stéphane Vuilleumier
Original Paper


The response of Saccharomyces cerevisiae to arsenic involves a large ensemble of genes, many of which are associated with glutathione-related metabolism. The role of the glutathione S-transferase (GST) product of the URE2 gene involved in resistance of S. cerevisiae to a broad range of heavy metals was investigated. Glutathione peroxidase activity, previously reported for the Ure2p protein, was unaffected in cell-free extracts of an ure2Δ mutant of S. cerevisiae. Glutathione levels in the ure2Δ mutant were lowered about threefold compared to the isogenic wild-type strain but, as in the wild-type strain, increased 2–2.5-fold upon addition of either arsenate (AsV) or arsenite (AsIII). However, lack of URE2 specifically caused sensitivity to arsenite but not to arsenate. The protective role of URE2 against arsenite depended solely on the GST-encoding 3′-end portion of the gene. The nitrogen source used for growth was suggested to be an important determinant of arsenite toxicity, in keeping with non-enzymatic roles of the URE2 gene product in GATA-type regulation.


Ure2 Glutathione S-transferase GATA regulation Arsenic detoxification 



Glutathione S-transferases


Nitrogen catabolite repression


Glutathione peroxidase


NADPH-dependent glutamate dehydrogenase


Glutamine synthetase


NAD+-dependent glutamate dehydrogenase



We are grateful to Ivan Tarassov for providing the p413 vector, to Ales Vancura for pET23b-URE2 and pET23b-URE2(ΔN) plasmids, and to Emmanuelle Boy-Marcotte for the FPS1-lacZ fusion plasmid. Work in S.V.’s laboratory is supported by REALISE, the Alsace Research Network in Environmental Sciences. The present study was supported by CNRS ATIP to S.V., by the National Science Fund of Bulgarian Ministry of Education and Science (Project No. Б-BУ-201/06) and by a visiting scientist grant of the European Doctoral College of Strasbourg to A.K. T.T. was the recipient of an Agence Universitaire de la Francophonie PhD grant and a member of the European Doctoral College of Strasbourg.

Supplementary material

203_2010_614_MOESM1_ESM.doc (48 kb)
Supplementary material 1 (DOC 47 kb)


  1. Allocati N, Federici L, Masulli M, Di Ilio C (2009) Glutathione transferases in bacteria. FEBS J 276:58–75CrossRefPubMedGoogle Scholar
  2. Aposhian HV, Aposhian MM (2006) Arsenic toxicology: five questions. Chem Res Toxicol 19:1–15CrossRefPubMedGoogle Scholar
  3. Aposhian HV, Zakharyan RA, Avram MD, Sampayo-Reyes A, Wollenberg ML (2004) A review of the enzymology of arsenic metabolism and a new potential role of hydrogen peroxide in the detoxication of the trivalent arsenic species. Toxicol Appl Pharmacol 198:327–335CrossRefPubMedGoogle Scholar
  4. Bai M, Zhou JM, Perrett S (2004) The yeast prion protein Ure2 shows glutathione peroxidase activity in both native and fibrillar forms. J Biol Chem 279:50025–50030CrossRefPubMedGoogle Scholar
  5. Basu U, Southron JL, Stephens JL, Taylor GJ (2004) Reverse genetic analysis of the glutathione metabolic pathway suggests a novel role of PHGPX and URE2 genes in aluminum resistance in Saccharomyces cerevisiae. Mol Genet Genom 271:627–637CrossRefGoogle Scholar
  6. Bousset L, Belrhali H, Janin J, Melki R, Morera S (2001) Structure of the globular region of the prion protein Ure2 from the yeast Saccharomyces cerevisiae. Structure 9:39–46CrossRefPubMedGoogle Scholar
  7. Bun-Ya M, Shikata K, Nakade S, Yompakdee C, Harashima S, Oshima Y (1996) Two new genes, PHO86 and PHO87, involved in inorganic phosphate uptake in Saccharomyces cerevisiae. Curr Genet 29:344–351PubMedGoogle Scholar
  8. Choi JH, Lou W, Vancura A (1998) A novel membrane-bound glutathione S-transferase functions in the stationary phase of the yeast Saccharomyces cerevisiae. J Biol Chem 273:29915–29922CrossRefPubMedGoogle Scholar
  9. Cooper TG (2002) Transmitting the signal of excess nitrogen in Saccharomyces cerevisiae from the Tor proteins to the GATA factors: connecting the dots. FEMS Microbiol Rev 26:223–238CrossRefPubMedGoogle Scholar
  10. Coschigano PW, Magasanik B (1991) The URE2 gene product of Saccharomyces cerevisiae plays an important role in the cellular response to the nitrogen source and has homology to glutathione S-transferases. Mol Cell Biol 11:822–832PubMedGoogle Scholar
  11. Crespo JL, Daicho K, Ushimaru T, Hall MN (2001) The GATA transcription factors GLN3 and GAT1 link TOR to salt stress in Saccharomyces cerevisiae. J Biol Chem 276:34441–34444CrossRefPubMedGoogle Scholar
  12. Dang VD, Valens M, Bolotinfukuhara M, Daignanfornier B (1994) A genetic screen to isolate genes regulated by the yeast CCAAT-box binding-protein Hap2p. Yeast 10:1273–1283CrossRefPubMedGoogle Scholar
  13. Doherty D, Tabor H, White-Tabor C (1970) Glutamate dehydrogenases (yeast). Meth Enzymol 17:850–856CrossRefGoogle Scholar
  14. Frova C (2006) Glutathione transferases in the genomics era: new insights and perspectives. Biomol Eng 23:149–169CrossRefPubMedGoogle Scholar
  15. Funk M, Niedenthal R, Mumberg D, Brinkmann K, Ronicke V, Henkel T (2002) Vector systems for heterologous expression of proteins in Saccharomyces cerevisiae. Meth Enzymol 350:248–257CrossRefPubMedGoogle Scholar
  16. Georis I, Feller A, Tate JJ, Cooper TG, Dubois E (2009) Nitrogen catabolite repression-sensitive transcription of Tor pathway regulation: the genetic background, reporter gene and GATA factor assayed determine the outcomes. Genetics 181:861–874CrossRefPubMedGoogle Scholar
  17. Ghosh M, Shen J, Rosen BP (1999) Pathways of As(III) detoxification in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 96:5001–5006CrossRefPubMedGoogle Scholar
  18. Haugen AC, Kelley R, Collins JB, Tucker CJ, Deng CC, Afshari CA, Brown JM, Ideker T, Van Houten B (2004) Integrating phenotypic and expression profiles to map arsenic-response networks. Genome Biol 5:R95CrossRefPubMedGoogle Scholar
  19. Hosiner D, Lempiainen H, Reiter W, Urban J, Loewith R, Ammerer G, Schweyen R, Shore D, Schuller C (2009) Arsenic toxicity to Saccharomyces cerevisiae is a consequence of inhibition of the TORC1 kinase combined with a chronic stress response. Mol Biol Cell 20:1048–1057CrossRefPubMedGoogle Scholar
  20. Ilina Y, Sloma E, Maciaszczyk-Dziubinska E, Novotny M, Thorsen M, Wysocki R, Tamás MJ (2008) Characterization of the DNA-binding motif of the arsenic-responsive transcription factor Yap8p. Biochem J 415:467–475CrossRefPubMedGoogle Scholar
  21. Lian HY, Jiang Y, Zhang H, Jones GW, Perrett S (2006) The yeast prion protein Ure2: Structure, function and folding. Biochim Biophys Acta 1764:535–545PubMedGoogle Scholar
  22. Liu ZJ, Boles E, Rosen BP (2004) Arsenic trioxide uptake by hexose permeases in Saccharomyces cerevisiae. J Biol Chem 279:17312–17318CrossRefPubMedGoogle Scholar
  23. Lowry OH, Rosebrough NJ, Farr AL, Rabndall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275PubMedGoogle Scholar
  24. Maciaszczyk-Dziubinska E, Migdal I, Migocka M, Bocer T, Wysocki R (2010) The yeast aquaglyceroporin Fps1p is a bidirectional arsenite channel. FEBS Lett 584:726-732Google Scholar
  25. Magasanik B, Kaiser CA (2002) Nitrogen regulation in Saccharomyces cerevisiae. Gene 290:1–18CrossRefPubMedGoogle Scholar
  26. Masison DC, Wickner RB (1995) Prion-inducing domain of yeast Ure2p and protease resistance of Ure2p prion-containing cells. Science 270:93–95CrossRefPubMedGoogle Scholar
  27. McGoldrick S, O’Sullivan SM, Sheehan D (2005) Glutathione transferase-like proteins encoded in genomes of yeasts and fungi: insights into evolution of a multifunctional protein superfamily. FEMS Microbiol Lett 242:1–12CrossRefPubMedGoogle Scholar
  28. Menezes RA, Amaral C, Batista-Nascimento L, Santos C, Ferreira RB, Devaux F, Eleutherio ECA, Rodrigues-Pousada C (2008) Contribution of Yap1 towards Saccharomyces cerevisiae adaptation to arsenic-mediated oxidative stress. Biochem J 414:301–311CrossRefPubMedGoogle Scholar
  29. Mukhopadhyay R, Shi J, Rosen BP (2000) Purification and characterization of Acr2p, the Saccharomyces cerevisiae arsenate reductase. J Biol Chem 275:21149–21157CrossRefPubMedGoogle Scholar
  30. Perrone GG, Grant CM, Dawes IW (2005) Genetic and environmental factors influencing glutathione homeostasis in Saccharomyces cerevisiae. Mol Biol Cell 16:218–230CrossRefPubMedGoogle Scholar
  31. Rai R, Cooper TG (2005) In vivo specificity of Ure2 protection from heavy metal ion and oxidative cellular damage in Saccharomyces cerevisiae. Yeast 22:343–358CrossRefPubMedGoogle Scholar
  32. Rai R, Tate JJ, Cooper TG (2003) Ure2, a prion precursor with homology to glutathione S-transferase, protects Saccharomyces cerevisiae cells from heavy metal ion and oxidant toxicity. J Biol Chem 278:12826–12833CrossRefPubMedGoogle Scholar
  33. Reynolds A, Lundblad V, Dorris D, Keaveney M (2001) Yeast vectors and assays for expression of cloned genes. In: Ausubel FMEA (ed) Curr Protoc Mol Biol. Wiley, New York, p Unit 13.16Google Scholar
  34. Rosen BP (2002) Biochemistry of arsenic detoxification. FEBS Lett 529:86–92CrossRefPubMedGoogle Scholar
  35. Scherens B, Feller A, Vierendeels F, Messenguy F, Dubois E (2006) Identification of direct and indirect targets of the Gln3 and Gat1 activators by transcriptional profiling in response to nitrogen availability in the short and long term. FEMS Yeast Res 6:777–791CrossRefPubMedGoogle Scholar
  36. Springael JY, Penninckx MJ (2003) Nitrogen-source regulation of yeast gamma-glutamyl transpeptidase synthesis involves the regulatory network including the GATA zinc-finger factors Gln3, Nil1/Gat1 and Gzf3. Biochem J 371:589–595CrossRefPubMedGoogle Scholar
  37. Tadi D, Hasan RN, Bussereau F, Boy-Marcotte E, Jacquet M (1999) Selection of genes repressed by cAMP that are induced by nutritional limitation in Saccharomyces cerevisiae. Yeast 15:1733–1745CrossRefPubMedGoogle Scholar
  38. Tate JJ, Cooper TG (2007) Stress-responsive Gln3 localization in Saccharomyces cerevisiae is separable from and can overwhelm nitrogen source regulation. J Biol Chem 282:18467–18480CrossRefPubMedGoogle Scholar
  39. Taussky HH, Shorr E, Kurzmann G (1953) A microcolorimetric method for the determination of inorganic phosphorous. J Biol Chem 202:675–685PubMedGoogle Scholar
  40. ter Schure EG, van Riel NAW, Verrips CT (2000) The role of ammonia metabolism in nitrogen catabolite repression in Saccharomyces cerevisiae. FEMS Microbiol Rev 24:67–83CrossRefPubMedGoogle Scholar
  41. Thorsen M, Di YJ, Tangemo C, Morillas M, Ahmadpour D, Van der Does C, Wagner A, Johansson E, Boman J, Posas F, Wysocki R, Tamás MJ (2006) The MAPK Hog1p modulates Fps1p-dependent arsenite uptake and tolerance in yeast. Mol Biol Cell 17:4400–4410CrossRefPubMedGoogle Scholar
  42. Thorsen M, Lagniel G, Kristiansson E, Junot C, Nerman O, Labarre J, Tamás MJ (2007) Quantitative transcriptome, proteome, and sulfur metabolite profiling of the Saccharomyces cerevisiae response to arsenite. Physiol Genom 30:35–43CrossRefGoogle Scholar
  43. Thorsen M, Perrone GG, Kristiansson E, Traini M, Ye T, Dawes IW, Nerman O, Tamás MJ (2009) Genetic basis of arsenite and cadmium tolerance in Saccharomyces cerevisiae. BMC Genom 10(105)Google Scholar
  44. Todorova TT, Petrova VY, Vuilleumier S, Kujumdzieva A (2009) Response to different oxidants of Saccharomyces cerevisiae ure2Δ mutant. Arch Microbiol 191:837–845CrossRefPubMedGoogle Scholar
  45. Veal EA, Toone WM, Jones N, Morgan BA (2002) Distinct roles for glutathione S-transferases in the oxidative stress response in Schizosaccharomyces pombe. J Biol Chem 277:35523–35531CrossRefPubMedGoogle Scholar
  46. Vuilleumier S, Pagni M (2002) Bacterial glutathione S-transferases: new lessons from bacterial genomes. Appl Microbiol Biotechnol 58:138–146CrossRefPubMedGoogle Scholar
  47. Wickner RB, Taylor KL, Edskes HK, Maddelein ML, Moriyama H, Roberts BT (2000) Prions of yeast as heritable amyloidoses. J Struct Biol 130:310–322CrossRefPubMedGoogle Scholar
  48. Wong KH, Hynes MJ, Davis MA (2008) Recent advances in nitrogen regulation: a comparison between Saccharomyces cerevisiae and filamentous fungi. Eukaryot Cell 7:917–925CrossRefPubMedGoogle Scholar
  49. Wysocki R, Tamás MJ (2010) How Saccharomyces cerevisiae copes with toxic metals and metalloids. FEMS Microbiol Rev, in press, available online. doi: 10.1111/j.1574-6976.2010.00217.x
  50. Wysocki R, Bobrowicz P, Ulaszewski S (1997) The Saccharomyces cerevisiae ACR3 gene encodes a putative membrane protein involved in arsenite transport. J Biol Chem 272:30061–30066CrossRefPubMedGoogle Scholar
  51. Wysocki R, Chery CC, Wawrzycka D, Van Hulle M, Cornelis R, Thevelein JM, Tamás MJ (2001) The glycerol channel Fps1p mediates the uptake of arsenite and antimonite in Saccharomyces cerevisiae. Molec Microbiol 40:1391–1401CrossRefGoogle Scholar
  52. Yompakdee C, Bun-ya M, Shikata K, Ogawa N, Harashima S, Oshima Y (1996) A putative new membrane protein, Pho86p, in the inorganic phosphate uptake system of Saccharomyces cerevisiae. Gene 171:41–47Google Scholar
  53. Zakharyan RA, Aposhian HV (1999) Enzymatic reduction of arsenic compounds in mammalian systems: the rate-limiting enzyme of rabbit liver arsenic biotransformation is MMA(V) reductase. Chem Res Toxicol 12:1278–1283CrossRefPubMedGoogle Scholar
  54. Zhang YS (2000) Role of glutathione in the accumulation of anticarcinogenic isothiocyanates and their glutathione conjugates by murine hepatoma cells. Carcinogenesis 21:1175–1182CrossRefPubMedGoogle Scholar
  55. Zhang ZR, Perrett S (2009) Novel glutaredoxin activity of the yeast prion protein Ure2 reveals a native-like dimer within fibrils. J Biol Chem 284:14058–14067CrossRefPubMedGoogle Scholar
  56. Zhang ZR, Bai M, Wang XY, Zhou JM, Perrett S (2008) “Restoration” of glutathione transferase activity by single-site mutation of the yeast prion protein Ure2. J Mol Biol 384:641–651CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Tatina T. Todorova
    • 1
    • 2
  • Anna V. Kujumdzieva
    • 1
  • Stéphane Vuilleumier
    • 2
  1. 1.Faculty of Biology, Department of General and Applied MicrobiologySofia University “St. Kliment Ohridski”SofiaBulgaria
  2. 2.Université de StrasbourgStrasbourg CédexFrance

Personalised recommendations