Advertisement

Archives of Microbiology

, Volume 192, Issue 6, pp 485–491 | Cite as

Caldimonas hydrothermale sp. nov., a novel thermophilic bacterium isolated from roman hot bath in south Tunisia

  • Hanene Bouraoui
  • Imen Boukari
  • Jean Pierre Touzel
  • Michael O’Donohue
  • Mohamed Manai
Original Paper

Abstract

A polyphasic approach was used to characterize a bacterium, HAN-85T, isolated from thermal water in natural thermal spring at Tozeur, an oasis in southwest Tunisia. The novel isolate was thermophilic, strictly aerobic and amylolytic bacterium, which stained Gram negative. Cells were short rods motile by means of a single polar flagellum. Their optimum temperature and pH required for growth were 55°C and pH 7, respectively. Comparative 16S rRNA gene sequence analyses showed that strain HAN-85T belonged to the genus Caldimonas, with highest sequence similarity to the type strains Caldimonas manganoxidans and Caldimonas taiwanensis. DNA–DNA hybridization measurements revealed low DNA relatedness (35.2–44.5%) between the novel isolate and its closest relative, C. manganoxidans. The major cellular fatty acid components were 16:0, 17:0 cyclo and summed feature 3. The DNA G+C content was 68.3 mol%. Taken together, the results of DNA–DNA hybridization, fatty acids profile, physiological tests and biochemical analyses have allowed the genotypic and phenotypic differentiation of the isolate from currently recognized Caldimonas species. Therefore, we suggest that this isolate is a novel species within the genus Caldimonas and propose that it should be named Caldimonas hydrothermale sp. nov. The type strain is HAN-85T (=DSM 18497T =LMG 23755T). The Gen Bank/Embl/DDBJ accession number for the 16S rRNA gene sequence of strain DSM 18497T is AM283038.

Keywords

Caldimonas Thermophile Amylolytic bacterium Hammam Tunisian thermal spring 

Notes

Acknowledgments

This work was supported by the French-Tunisian Mixed Committee of University Cooperation (CMCU Projects).

Supplementary material

203_2010_576_MOESM1_ESM.doc (11.3 mb)
Supplementary material 1 (DOC 11,540 kb)

References

  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410PubMedGoogle Scholar
  2. Baker GC, Smith JJ, Cowan DA (2003) Review and re-analysis of domain-specific 16S primers. J Microbiol Methods 55:541–555CrossRefPubMedGoogle Scholar
  3. Caetano AG (2002) Evolved RNA secondary structure and the rooting of the universal tree of life. J Mol Evol 54:333–345Google Scholar
  4. Cashion P, Hodler MA, McCuIIy J, Franklin M (1977) A rapid method for base ratio determination of bacterial DNA. Anal Biochem 81:461–466CrossRefPubMedGoogle Scholar
  5. Chen WM, Chang JS, Chiu CH, Chang SC, Chen WC, Jiang CM (2005) Caldimonas taiwanensis sp. nov., a amylase producing bacterium isolated from a hot spring. Syst Appl Microbiol 28:415–420CrossRefPubMedGoogle Scholar
  6. De Champdore M, Staiano M, Rossi M, D’Auria S (2007) Proteins from extremophiles as stable tools for advanced biotechnological applications of high social interest. J R Soc Interf 4:183–191CrossRefGoogle Scholar
  7. De Ley J, Cattoir H, Reynaerts A (1970) The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142CrossRefPubMedGoogle Scholar
  8. Elbanna K, Lütke-Eversloh T, Van Trappen S, Mergaert J, Swings J, Steinbuchel A (2003) Schlegelella thermodepolymerans gen. nov., sp nov., a novel thermophilic bacterium that degrades poly(3-hydroxybutyrate-co-3-mercaptopropionate). Int J Syst Evol Microbiol 53:1165–1168CrossRefPubMedGoogle Scholar
  9. Ezeji TC, Wolf A, Bahl H (2005) Isolation, characterization, and identification of Geobacillus thermodenitrificans HRO10, an alpha-amylase and alpha-glucosidase producing thermophile. Can J Microbiol 51:685–693CrossRefPubMedGoogle Scholar
  10. Fahy PC, Persley GC (1983) Plant bacterial diseases: a diagnostic guide. Academic Press, New YorkGoogle Scholar
  11. Haouari O, Fardeau ML, Casalot L, Tholozan JL, Hamdi M, Olivier B (2006) Isolation of sulfate-reducing bacteria from Tunisian marine sediments and description of Desulfovibrio bizertensis sp. nov. Int J Syst Evol Microbiol 56:2909–2913CrossRefPubMedGoogle Scholar
  12. Haouari O, Fardeau ML, Cayol JL, Casiot C, Elbaz PF, Hamdi M, Manon J, Bernard O (2008) Desulfotomaculum hydrothermale sp. nov., a thermophilic de sulfate-reducing bacterium isolated from a terrestrial Tunisian hot spring. Int J Syst Evol Microbiol 58:2529–2535CrossRefPubMedGoogle Scholar
  13. Heimbrook ME, Wang WL, Campbell G (1989) Staining bacterial flagella easily. J Clin Microbiol 27:2612–2615PubMedGoogle Scholar
  14. Huss VA, Festl H, Schleifer KH (1983) Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192Google Scholar
  15. Khan ST, Horiba Y, Yamamoto M, Hiraishi A (2002) Members of the family Comamonadaceae as primary poly(3-hydroxybutyrate-co-3-hydroxyvalerate)-degrading denitrifiers in activated sludge as revealed by a polyphasic approach. Appl Environ Microbiol 68:3206–3214CrossRefPubMedGoogle Scholar
  16. Kublanov IV, Anna A, Perevalov G, Slobodkina B, Aleksander V, Lebedinsky S, Bidzhieva K, Tatyana V, Kolganova E, Kaliberda N, Lev D, Rumsh TH, Elizaveta A, Bonch O (2009) Biodiversity of thermophilic prokaryotes with hydrolytic activities in hot springs of Uzon Caldera, Kamchatka. Appl Env Micro 75:286–291CrossRefGoogle Scholar
  17. Manaia CM, Nunes OC, Nogales B (2003) Caenibacterium thermophilum gen. nov., sp nov., isolated from a thermophilic aerobic digester of municipal sludge. Int J Syst Evol Microbiol 53:1375–1382CrossRefPubMedGoogle Scholar
  18. Mesbah M, Premachandran U, Whitman W (1989) Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. Int J Syst Bact 39:159–167CrossRefGoogle Scholar
  19. Page RDM (1996) TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358PubMedGoogle Scholar
  20. Podar M, Reysenbach A (2006) New opportunities revealed by biotechnological explorations of extremophiles. Curr Opin Biotechnol 17:250–255CrossRefPubMedGoogle Scholar
  21. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  22. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, New YorkGoogle Scholar
  23. Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newslett 20:1–6Google Scholar
  24. Schaad NW (1988) Laboratory guide for identification of plant pathogenic bacteria. American hytopathological society, St. Paul, MinnGoogle Scholar
  25. Schwartzman DW, Lineweaver CH (2004) The hyperthermophilic origin of life revisited. Biochem Soc Trans 32:168–171CrossRefPubMedGoogle Scholar
  26. Sheu DS, Chen WM, Yang JY, Chang RC (2009) Thermophilic bacterium Caldimonas taiwanensis produces poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from starch and valerate as carbon sources. Enzyme Microb Technol 44:289–294CrossRefGoogle Scholar
  27. Takeda M, Kitashima K, Adachi K, Hanaoka Y, Suzuki I, Koizumi JI (2000) Cloning and expression of the gene encoding thermostable poly(3-hydroxybutyrate) depolymerase. J Biosci Bioeng 90:416–421PubMedGoogle Scholar
  28. Takeda M, Kamagata Y, Ghiorse WC, Hanada S, Koizumi J (2002) Caldimonas manganoxidans gen. nov., sp. nov., a poly(3-hydroxybutyrate)-degrading, manganese-oxidizing thermophile. Int J Syst Evol Microbiol 52:895–900CrossRefPubMedGoogle Scholar
  29. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680CrossRefPubMedGoogle Scholar
  30. Touzel JP, O’Donohue M, Debeire P, Samain E, Breton C (2000) Thermobacillus xylanilyticus gen. nov., sp nov., a new aerobic thermophilic xylan-degrading bacterium isolated from farm soil. Int J Syst Evol Microbiol 50:315–320PubMedGoogle Scholar
  31. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE, Stackebrandt E, Starr MP, Trüper HG (1987) Report of the ad-hoc-committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464CrossRefGoogle Scholar
  32. Willems A, Deley J, Gillis M, Kersters K (1991) Comamonadaceae, a new family encompassing the Acidovorans ribosomal-RNA complex, including Variovorax paradoxus gen. nov., comb. nov., for Alcaligenes paradoxus. Int J Syst Bacteriol 41:445–450CrossRefGoogle Scholar
  33. Zeikus JG, Wolfe RS (1972) Methanobacterium thermoautotrophicus sp. nov., an anaerobic, autotrophic, extreme thermophile. J Bacteriol 109:707–713PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Hanene Bouraoui
    • 1
  • Imen Boukari
    • 2
  • Jean Pierre Touzel
    • 2
  • Michael O’Donohue
    • 3
    • 4
    • 5
  • Mohamed Manai
    • 1
  1. 1.Laboratoire de Biochimie et Biologie Moléculaire, Faculté des Sciences de TunisCampus Universitaire El-ManarTunisTunisie
  2. 2.INRA, UMR FARE INRA-URCA 614, 8, rue Gabriel-VoisinReims Cedex 02France
  3. 3.Université de Toulouse, INSA, UPS, INP, LISBPToulouseFrance
  4. 4.INRA, UMR792 Ingénierie des Systèmes Biologiques et des ProcédésToulouseFrance
  5. 5.CNRS, UMR5504ToulouseFrance

Personalised recommendations