Archives of Microbiology

, Volume 192, Issue 6, pp 447–459

Oxidative stress protection and the repair response to hydrogen peroxide in the hyperthermophilic archaeon Pyrococcus furiosus and in related species

  • Kari R. Strand
  • Chengjun Sun
  • Ting Li
  • Francis E. JenneyJr.
  • Gerrit J. Schut
  • Michael W. W. Adams
Original Paper

Abstract

Pyrococcus furiosus is a shallow marine, anaerobic archaeon that grows optimally at 100°C. Addition of H2O2 (0.5 mM) to a growing culture resulted in the cessation of growth with a 2-h lag before normal growth resumed. Whole genome transcriptional profiling revealed that the main response occurs within 30 min of peroxide addition, with the up-regulation of 62 open reading frames (ORFs), 36 of which are part of 10 potential operons. More than half of the up-regulated ORFs are of unknown function, while some others encode proteins that are involved potentially in sequestering iron and sulfide, in DNA repair and in generating NADPH. This response is thought to involve primarily damage repair rather than protection, since cultures exposed to sub-toxic levels of H2O2 were not more resistant to the subsequent addition of H2O2 (0.5–5.0 mM). Consequently, there is little if any induced protective response to peroxide. The organism maintains a constitutive protective mechanism involving high levels of oxidoreductase-type enzymes such as superoxide reductase, rubrerythrin, and alkyl hydroperoxide reductase. Related hyperthermophiles contain homologs of the proteins involved in the constitutive protective mechanism but these organisms were more sensitive to peroxide than P. furiosus and lack several of its peroxide-responsive ORFs.

Keywords

Hyperthermophile Anaerobic Oxidative stress Peroxide response 

Supplementary material

203_2010_570_MOESM1_ESM.pdf (425 kb)
(PDF 425 kb)

References

  1. Almeida CC, Romao CV, Lindley PF, Teixeira M, Saraiva LM (2006) The role of the hybrid cluster protein in oxidative stress defense. J Biol Chem 281:32445–32450CrossRefPubMedGoogle Scholar
  2. Almiron M, Link AJ, Furlong D, Kolter R (1992) A novel DNA-binding protein with regulatory and protective roles in starved Escherichia coli. Genes Dev 6:2646–2654CrossRefPubMedGoogle Scholar
  3. Atomi H, Fukui T, Kanai T, Morikawa M, Imanaka T (2004) Description of Thermococcus kodakaraensis sp. nov., a well studied hyperthermophilic archaeon previously reported as Pyrococcus sp. KOD1. Archaea 1:263–267CrossRefPubMedGoogle Scholar
  4. Briolat V, Reysset G (2002) Identification of the Clostridium perfringens genes involved in the adaptive response to oxidative stress. J Bacteriol 184:2333–2343CrossRefPubMedGoogle Scholar
  5. Ceci P, Cellai S, Falvo E, Rivetti C, Rossi GL, Chiancone E (2004) DNA condensation and self-aggregation of Escherichia coli Dps are coupled phenomena related to the properties of the N-terminus. Nucleic Acids Res 32:5935–5944CrossRefPubMedGoogle Scholar
  6. Cohen GN, Barbe V, Flament D, Galperin M, Heilig R, Lecompte O, Poch O, Prieur D, Querellou J, Ripp R, Thierry JC, Van der Oost J, Weissenbach J, Zivanovic Y, Forterre P (2003) An integrated analysis of the genome of the hyperthermophilic archaeon Pyrococcus abyssi. Mol Microbiol 47:1495–1512CrossRefPubMedGoogle Scholar
  7. Cypionka H (2000) Oxygen respiration by Desulfovibrio species. Annu Rev Microbiol 54:827–848CrossRefPubMedGoogle Scholar
  8. Delphine J, Briolat V, Reysset G (2004) Oxidative stress response in Clostridium perfringens. Microbiology 150:1649–1659CrossRefGoogle Scholar
  9. Diaz PI, Slakeski N, Reynolds EC, Morona R, Rogers AH, Kolenbrander PE (2006) Role of oxyR in the oral anaerobe Porphyromonas gingivalis. J Bacteriol 188:2454–2462CrossRefPubMedGoogle Scholar
  10. DiRuggiero J, Santangelo N, Nackerdien Z, Ravel J, Robb FT (1997) Repair of extensive ionizing-radiation DNA damage at 95 degrees C in the hyperthermophilic archaeon Pyrococcus furiosus. J Bacteriol 179:4643–4645PubMedGoogle Scholar
  11. Emerson JE, Stabler RA, Wren BW, Fairweather NF (2008) Microarray analysis of the transcriptional responses of Clostridium difficile to environmental and antibiotic stress. J Med Microbiol 57:757–764CrossRefPubMedGoogle Scholar
  12. Farr SB, Kogoma T (1991) Oxidative stress responses in Escherichia coli and Salmonella typhimurium. Microbiol Rev 55:561–585PubMedGoogle Scholar
  13. Fournier M, Aubert C, Dermoun Z, Durand MC, Moinier D, Dolla A (2006) Response of the anaerobe Desulfovibrio vulgaris Hildenborough to oxidative conditions: proteome and transcript analysis. Biochimie 88:85–94CrossRefPubMedGoogle Scholar
  14. Fridovich I (1978) The biology of oxygen radicals. Science 201:875–880CrossRefPubMedGoogle Scholar
  15. Fukui T, Atomi H, Kanai T, Matsumi R, Fujiwara S, Imanaka T (2005) Complete genome sequence of the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1 and comparison with Pyrococcus genomes. Genome Res 15:352–363CrossRefPubMedGoogle Scholar
  16. Gonzalez JM, Masuchi Y, Robb FT, Ammerman JW, Maeder DL, Yanagibayashi M, Tamaoka J, Kato C (1998) Pyrococcus horikoshii sp. nov., a hyperthermophilic archaeon isolated from a hydrothermal vent at the Okinawa Trough. Extremophiles 2:123–130CrossRefPubMedGoogle Scholar
  17. Grunden AM, Jenney FE Jr, Ma K, Ji M, Weinberg MV, Adams MW (2005) In vitro reconstitution of an NADPH-dependent superoxide reduction pathway from Pyrococcus furiosus. Appl Environ Microbiol 71:1522–1530CrossRefPubMedGoogle Scholar
  18. Hamilton-Brehm SD, Schut GJ, Adams MW (2005) Metabolic and evolutionary relationships among Pyrococcus species: genetic exchange within a hydrothermal vent environment. J Bacteriol 187:7492–7499CrossRefPubMedGoogle Scholar
  19. Heidelberg JF, Seshadri R, Haveman SA, Hemme CL, Paulsen IT, Kolonay JF, Eisen JA, Ward N, Methe B, Brinkac LM, Daugherty SC, Deboy RT, Dodson RJ, Durkin AS, Madupu R, Nelson WC, Sullivan SA, Fouts D, Haft DH, Selengut J, Peterson JD, Davidsen TM, Zafar N, Zhou L, Radune D, Dimitrov G, Hance M, Tran K, Khouri H, Gill J, Utterback TR, Feldblyum TV, Wall JD, Voordouw G, Fraser CM (2004) The genome sequence of the anaerobic, sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough. Nat Biotechnol 22:554–559CrossRefPubMedGoogle Scholar
  20. Helmann JD, Wu MF, Gaballa A, Kobel PA, Morshedi MM, Fawcett P, Paddon C (2003) The global transcriptional response of Bacillus subtilis to peroxide stress is coordinated by three transcription factors. J Bacteriol 185:243–253CrossRefPubMedGoogle Scholar
  21. Holden JF, Poole FL II, Tollaksen SL, Giometti CS, Lim H, Yates JR 3rd, Adams MW (2001) Identification of membrane proteins in the hyperthermophilic archaeon Pyrococcus furiosus using proteomics and prediction programs. Comp Funct Genomics 2:275–288CrossRefPubMedGoogle Scholar
  22. Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6:65–70Google Scholar
  23. Imlay JA (2003) Pathways of oxidative damage. Annu Rev Microbiol 57:395–418CrossRefPubMedGoogle Scholar
  24. Imlay JA (2008a) Cellular defenses against superoxide and hydrogen peroxide. Annu Rev Biochem 77:755–776CrossRefPubMedGoogle Scholar
  25. Imlay JA (2008b) How obligatory is anaerobiosis? Mol Microbiol 68:801–804CrossRefPubMedGoogle Scholar
  26. Jenney FE Jr, Verhagen MF, Cui X, Adams MW (1999) Anaerobic microbes: oxygen detoxification without superoxide dismutase. Science 286:306–309CrossRefPubMedGoogle Scholar
  27. Kawakami R, Sakuraba H, Kamohara S, Goda S, Kawarabayasi Y, Ohshima T (2004) Oxidative stress response in an anaerobic hyperthermophilic archaeon: presence of a functional peroxiredoxin in Pyrococcus horikoshii. J Biochem 136:541–547CrossRefPubMedGoogle Scholar
  28. Kawarabayasi Y, Sawada M, Horikawa H, Haikawa Y, Hino Y, Yamamoto S, Sekine M, Baba S, Kosugi H, Hosoyama A, Nagai Y, Sakai M, Ogura K, Otsuka R, Nakazawa H, Takamiya M, Ohfuku Y, Funahashi T, Tanaka T, Kudoh Y, Yamazaki J, Kushida N, Oguchi A, Aoki K, Kikuchi H (1998) Complete sequence and gene organization of the genome of a hyper-thermophilic archaebacterium, Pyrococcus horikoshii OT3 (supplement). DNA Res 5:147–155CrossRefPubMedGoogle Scholar
  29. Kengen SW, Luesink EJ, Stams AJ, Zehnder AJ (1993) Purification and characterization of an extremely thermostable beta-glucosidase from the hyperthermophilic archaeon Pyrococcus furiosus. Eur J Biochem 213:305–312CrossRefPubMedGoogle Scholar
  30. Kieber RJ, Cooper WJ, Willey JD, Brooks Avery Jr G (2001) Hydrogen peroxide at the Bermuda Atlantic Time Series Station. Part 1: temporal variability of atmospheric hydrogen peroxide and its influence on seawater concentrations. J Atmosph Chem 39:1–13CrossRefGoogle Scholar
  31. Komori K, Miyata T, DiRuggiero J, Holley-Shanks R, Hayashi I, Cann IK, Mayanagi K, Shinagawa H, Ishino Y (2000) Both RadA and RadB are involved in homologous recombination in Pyrococcus furiosus. J Biol Chem 275:33782–33790CrossRefPubMedGoogle Scholar
  32. Kurtz DM Jr (2006) Avoiding high-valent iron intermediates: superoxide reductase and rubrerythrin. J Inorg Biochem 100:679–693CrossRefPubMedGoogle Scholar
  33. Lesser MP (2006) Oxidative stress in marine environments: biochemistry and physiological ecology. Annu Rev Physiol 68:253–278CrossRefPubMedGoogle Scholar
  34. Ma K, Adams MW (2001) Hydrogenases I and II from Pyrococcus furiosus. Methods Enzymol 331:208–216CrossRefPubMedGoogle Scholar
  35. Morikawa M, Izawa Y, Rashid N, Hoaki T, Imanaka T (1994) Purification and characterization of a thermostable thiol protease from a newly isolated hyperthermophilic Pyrococcus sp. Appl Environ Microbiol 60:4559–4566PubMedGoogle Scholar
  36. Mukhopadhyay A, Redding AM, Joachimiak MP, Arkin AP, Borglin SE, Dehal PS, Chakraborty R, Geller JT, Hazen TC, He Q, Joyner DC, Martin VJ, Wall JD, Yang ZK, Zhou J, Keasling JD (2007) Cell-wide responses to low-oxygen exposure in Desulfovibrio vulgaris Hildenborough. J Bacteriol 189:5996–6010CrossRefPubMedGoogle Scholar
  37. Nakayama K (1994) Rapid viability loss on exposure to air in a superoxide dismutase-deficient mutant of Porphyromonas gingivalis. J Bacteriol 176:1939–1943PubMedGoogle Scholar
  38. Omsland A, Miranda KM, Friedman RL, Boitano S (2008) Bordetella bronchiseptica responses to physiological reactive nitrogen and oxygen stresses. FEMS Microbiol Lett 284:92–101CrossRefPubMedGoogle Scholar
  39. Oremland RS (1988) Biogeochemistry of methanogenic bacteria. In: Zehnder AJB (ed) Biology of anaerobic microorganisms. Wiley, New York, pp 641–706Google Scholar
  40. Palma M, DeLuca D, Worgall S, Quadri LE (2004) Transcriptome analysis of the response of Pseudomonas aeruginosa to hydrogen peroxide. J Bacteriol 186:248–252CrossRefPubMedGoogle Scholar
  41. Pereira PM, He Q, Xavier AV, Zhou J, Pereira IA, Louro RO (2008) Transcriptional response of Desulfovibrio vulgaris Hildenborough to oxidative stress mimicking environmental conditions. Arch Microbiol 189:451–461CrossRefPubMedGoogle Scholar
  42. Poole FL II, Gerwe BA, Hopkins RC, Schut GJ, Weinberg MV, Jenney FE Jr, Adams MW (2005) Defining genes in the genome of the hyperthermophilic archaeon Pyrococcus furiosus: implications for all microbial genomes. J Bacteriol 187:7325–7332CrossRefPubMedGoogle Scholar
  43. Ramsay B, Wiedenheft B, Allen M, Gauss GH, Lawrence CM, Young M, Douglas T (2006) Dps-like protein from the hyperthermophilic archaeon Pyrococcus furiosus. J Inorg Biochem 100:1061–1068CrossRefPubMedGoogle Scholar
  44. Rocha ER, Selby T, Coleman JP, Smith CJ (1996) Oxidative stress response in an anaerobe, Bacteroides fragilis: a role for catalase in protection against hydrogen peroxide. J Bacteriol 178:6895–6903PubMedGoogle Scholar
  45. Sapra R, Verhagen MF, Adams MW (2000) Purification and characterization of a membrane-bound hydrogenase from the hyperthermophilic archaeon Pyrococcus furiosus. J Bacteriol 182:3423–3428CrossRefPubMedGoogle Scholar
  46. Schroder E, Ponting CP (1998) Evidence that peroxiredoxins are novel members of the thioredoxin fold superfamily. Protein Sci 7:2465–2468CrossRefPubMedGoogle Scholar
  47. Schut GJ, Zhou J, Adams MW (2001) DNA microarray analysis of the hyperthermophilic archaeon Pyrococcus furiosus: evidence for a new type of sulfur-reducing enzyme complex. J Bacteriol 183:7027–7036CrossRefPubMedGoogle Scholar
  48. Schut GJ, Brehm SD, Datta S, Adams MW (2003) Whole-genome DNA microarray analysis of a hyperthermophile and an archaeon: Pyrococcus furiosus grown on carbohydrates or peptides. J Bacteriol 185:3935–3947CrossRefPubMedGoogle Scholar
  49. Schut GJ, Bridger SL, Adams MW (2007) Insights into the metabolism of elemental sulfur by the hyperthermophilic archaeon Pyrococcus furiosus: characterization of a coenzyme A-dependent NAD(P)H sulfur oxidoreductase. J Bacteriol 189:4431–4441CrossRefPubMedGoogle Scholar
  50. Smet E, Lens P, Van Langenhove H (1998) Treatment of waste gases contaminated with odorous sulfur compounds. Crit Rev Environ Sci Technol 28:89–117CrossRefGoogle Scholar
  51. Stetter KO (1982) Ultrathin mycelia-forming organisms from submarine volcanic areas having an optimum growth temperature of 105°C. Nature 300:258–259CrossRefGoogle Scholar
  52. Stohl EA, Criss AK, Seifert HS (2005) The transcriptome response of Neisseria gonorrhoeae to hydrogen peroxide reveals genes with previously uncharacterized roles in oxidative damage protection. Mol Microbiol 58:520–532CrossRefPubMedGoogle Scholar
  53. Storz G, Imlay JA (1999) Oxidative stress. Curr Opin Microbiol 2:188–194CrossRefPubMedGoogle Scholar
  54. Sund CJ, Rocha ER, Tzianabos AO, Wells WG, Gee JM, Reott MA, O’Rourke DP, Smith CJ (2008) The Bacteroides fragilis transcriptome response to oxygen and H2O2: the role of OxyR and its effect on survival and virulence. Mol Microbiol 67:129–142PubMedCrossRefGoogle Scholar
  55. Tapley DW, Buettner GR, Shick JM (1999) Free radicals and chemiluminescence as products of the spontaneous oxidation of sulfide in seawater, and their biological implications. Biol Bull 196:52–56CrossRefGoogle Scholar
  56. Tatur J, Hagedoorn PL, Overeijnder ML, Hagen WR (2006) A highly thermostable ferritin from the hyperthermophilic archaeal anaerobe Pyrococcus furiosus. Extremophiles 10:139–148CrossRefPubMedGoogle Scholar
  57. Tran TT, Dam P, Su Z, Poole FL II, Adams MW, Zhou GT, Xu Y (2007) Operon prediction in Pyrococcus furiosus. Nucleic Acids Res 35:11–20CrossRefPubMedGoogle Scholar
  58. van der Oost J, Voorhorst WG, Kengen SW, Geerling AC, Wittenhorst V, Gueguen Y, de Vos WM (2001) Genetic and biochemical characterization of a short-chain alcohol dehydrogenase from the hyperthermophilic archaeon Pyrococcus furiosus. Eur J Biochem 268:3062–3068CrossRefPubMedGoogle Scholar
  59. Weinberg MV, Jenney FE Jr, Cui X, Adams MW (2004) Rubrerythrin from the hyperthermophilic archaeon Pyrococcus furiosus is a rubredoxin-dependent, iron-containing peroxidase. J Bacteriol 186:7888–7895CrossRefPubMedGoogle Scholar
  60. Weinberg MV, Schut GJ, Brehm S, Datta S, Adams MW (2005) Cold shock of a hyperthermophilic archaeon: Pyrococcus furiosus exhibits multiple responses to a suboptimal growth temperature with a key role for membrane-bound glycoproteins. J Bacteriol 187:336–348CrossRefPubMedGoogle Scholar
  61. Wiedenheft B, Mosolf J, Willits D, Yeager M, Dryden KA, Young M, Douglas T (2005) An archaeal antioxidant: characterization of a Dps-like protein from Sulfolobus solfataricus. Proc Natl Acad Sci USA 102:10551–10556CrossRefPubMedGoogle Scholar
  62. Williams E, Lowe TM, Savas J, DiRuggiero J (2007) Microarray analysis of the hyperthermophilic archaeon Pyrococcus furiosus exposed to gamma irradiation. Extremophiles 11:19–29CrossRefPubMedGoogle Scholar
  63. Zhang W, Culley DE, Hogan M, Vitiritti L, Brockman FJ (2006) Oxidative stress and heat-shock responses in Desulfovibrio vulgaris by genome-wide transcriptomic analysis. Antonie Van Leeuwenhoek 90:41–55CrossRefPubMedGoogle Scholar
  64. Zhao G, Bou-Abdallah F, Arosio P, Levi S, Janus-Chandler C, Chasteen ND (2003) Multiple pathways for mineral core formation in mammalian apoferritin. The role of hydrogen peroxide. Biochemistry 42:3142–3150CrossRefPubMedGoogle Scholar
  65. Zheng M, Wang X, Templeton LJ, Smulski DR, LaRossa RA, Storz G (2001) DNA microarray-mediated transcriptional profiling of the Escherichia coli response to hydrogen peroxide. J Bacteriol 183:4562–4570CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Kari R. Strand
    • 1
    • 2
  • Chengjun Sun
    • 1
  • Ting Li
    • 1
  • Francis E. JenneyJr.
    • 1
    • 3
  • Gerrit J. Schut
    • 1
  • Michael W. W. Adams
    • 1
  1. 1.Department of Biochemistry and Molecular BiologyUniversity of GeorgiaAthensUSA
  2. 2.Department of Molecular BiosciencesUniversity of OsloOsloNorway
  3. 3.Department of Basic SciencesGeorgia Campus Philadelphia College of Osteopathic MedicineSuwaneeUSA

Personalised recommendations