Archives of Microbiology

, Volume 192, Issue 3, pp 221–228

Effect of vitamin A treatment on superoxide dismutase-deficient yeast strains

  • Rafael Roehrs
  • Daniela R. J. Freitas
  • Aoi Masuda
  • João A. P. Henriques
  • Temenouga N. Guecheva
  • Ana-Ligia L. P. Ramos
  • Jenifer Saffi
Original Paper

Abstract

Vitamin A (Vit A) is widely suggested to be protective against oxidative stress. However, different studies have been demonstrated the pro-oxidant effects of retinoids in several experimental models. In this work, we used the yeast Saccharomyces cerevisiae as a model organism to study the Vit A effects on superoxide dismutase (SOD)-deficient yeast strains. We report here that Vit A (10, 20 and 40 mg/ml) decreases the survival of exponentially growing yeast cells, especially in strains deficient in CuZnSOD (sod1Δ) and CuZnSOD/MnSOD (sod1Δsod2Δ). We also observed the protective effect of vitamin E against the Vit A-induced toxicity. Possible adaptation effects induced by sub-lethal oxidative stress were monitored by pre-, co- and post-treatment with the oxidative agent paraquat. The enzymatic activities of catalase (CAT) and glutathione peroxidase (GPx), and the total glutathione content were determined after Vit A treatment. Our results showed that CuZnSOD represents an important defence against Vit A-generated oxidative damage. In SOD-deficient strains, the main defence against Vit A-produced reactive oxygen species (ROS) is GPx. However, the induction of GPx activity is not sufficient to prevent the Vit A-induced cell death in these mutants in exponential phase growth.

Keywords

Vitamin A Reactive oxygen species (ROS) Saccharomyces cerevisiae Oxidative stress Paraquat 

References

  1. Akerboom TP, Sies H (1981) Assay of glutathione, glutathione disulphide and glutathione mixed disulphides in biological samples. Method Enzymol 77:373–382CrossRefGoogle Scholar
  2. Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilising the principle of protein dye binding. Annal Biochem 72:248–254CrossRefGoogle Scholar
  3. Bronzetti G, Cini M, Andreoli E, Caltavuturo L, Panunzio M, Croce CD (2001) Protective effects of vitamins and selenium compounds in yeast. Mutat Res 496:105–115PubMedGoogle Scholar
  4. Dal-Pizzol F, Klamt F, Benfato MS, Bernard EA, Moreira JCF (2001) Retinol supplementation induces oxidative stress and modulates antioxidant enzymes in rat sertoli cells. Free Rad Res 34:395–404CrossRefGoogle Scholar
  5. De Flora S, Bagnasco M, Vainio H (1999) Modulation of genotoxic and related effects by carotenoids and vitamin A in experimental models: mechanistic issues. Mutagenesis 14:153–172CrossRefPubMedGoogle Scholar
  6. De Oliveira MR, Moreira JC (2008) Impaired redox state and respiratory chain enzyme activities in the cerebellum of vitamin A-treated rats. Toxicology 253:125–130CrossRefPubMedGoogle Scholar
  7. De Oliveira MR, Oliveira MW, Hoff ML, Behr GA, da Rocha RF, Moreira JC (2009) Evaluation of redox and bioenergetics states in the liver of vitamin A-treated rats. Eur J Pharmacol 610:99–105CrossRefPubMedGoogle Scholar
  8. Flattery-O′Brien JA, Grant CM, Dawes IW (1997) Stationary-phase regulation of the Saccharomyces cerevisiae SOD2 gene is dependent on additive effects of HAP2/3/4/5- and STRE- binding elements. Mol Microbiol 23:303–312CrossRefPubMedGoogle Scholar
  9. Flohe L, Gunzler WA (1984) Assays of glutathione peroxidase. Method Enzymol 105:114–121CrossRefGoogle Scholar
  10. Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB, Gisela S, Botstein D, Brown PO (2000) Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11:4241–4257PubMedGoogle Scholar
  11. Gralla EB, Kosma DJ (1992) Molecular genetics of superoxide dismutases in yeasts and related fungi. Adv Gent 30:251–319CrossRefGoogle Scholar
  12. Gralla EB, Valentine JS (1991) Null mutants of S. cerevisiae Cu, Zn superoxide dismutase: characterization and spontaneous rates. J Bacteriol 173:5918–5920PubMedGoogle Scholar
  13. Grant CM, Perrone G, Dawes IW (1998) Glutathione and catalase provide overlapping defenses for protection against hydrogen Peroxide in the yeast Saccharomyces cerevisiae. Biochem Biophys Res Commun 253:893–898CrossRefPubMedGoogle Scholar
  14. Halliwell B, Gutteridge JMC (2000) Free radical in biology and medicine, 3rd edn. Claredon, OxfordGoogle Scholar
  15. Jamieson DJ (1998) Oxidative stress responses of the yeast Saccharomyces cerevisiae. Yeast 14:1511–1527CrossRefPubMedGoogle Scholar
  16. Jamieson DJ, Rivers SL, Stephen DWS (1994) Analysis of Saccharomyces cerevisiae proteins induced by peroxide and superoxide stress. Microbiology 140:3277–3283CrossRefPubMedGoogle Scholar
  17. Klamt F, Dal-Pizzol F, Roehrs R, Oliveira RM, Dalmolin R, Henriques JAP, Andrades HHR, Ramos ALLP, Saffi J, Moreira JCF (2003) Genotoxicity, recombinogenicity and cellular preneoplasic transformation induced by Vitamin A supplementation. Mutat Res 539:117–125PubMedGoogle Scholar
  18. Kujumdzieva-Savova V, Savov A, Georgieva EI (1991) Role of superoxide dismutase in the oxidation of n-alkanes by yeast. Free Rad Biol Med 11:263–268CrossRefPubMedGoogle Scholar
  19. Longo VD, Gralla EB, Valentine JS (1996) Superoxide dismutase activity is essential for stationary phase survival in Saccharomyces cerevisiae. J Biol Chem 271:12275–12280CrossRefPubMedGoogle Scholar
  20. Manfredini V, Roehrs R, Peralba MCR, Henriques JAP, Saffi J, Ramos ALL, Benfato MS (2004) Glutathione peroxidase induction protects Saccharomyces cerevisiae sod1Δsod2Δ double mutants against oxidative damage. Braz J Med Biol Res 37:159–165CrossRefPubMedGoogle Scholar
  21. Michels C, Raes M, Toussaint O, Remacle J (1994) Importance of Se-Glutathione peroxidase, catalase and Cu/Zn-SOD for cell survival against oxidative stress. Free Rad Biol Med 17:235–248CrossRefGoogle Scholar
  22. Moradas FP, Costa V, Mager W (1996) The molecular defences against reactive oxygen species in yeast. Mol Microbiol 19:651–658CrossRefGoogle Scholar
  23. Murata M, Kawanishi S (2000) Oxidative DNA damages by vitamin A and its derivative via superoxide generation. J Biol Chem 275:2003–2008CrossRefPubMedGoogle Scholar
  24. Pereira MD, Herdeiro RS, Fernandes PN, Eleutherio ECA, Panek AD (2003) Targets of oxidative stress in yeast sod mutants. Biochim Biophis Acta 1620:245–251Google Scholar
  25. Petrova VY, Rasheva TV, Kujumdzieva AV (2002) Catalase enzyme in mitochondria of Saccharomyces cerevisiae. Eletronic J Biotechnol [online] 5:1 [cited 20 November 2009]. Available from: http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-34582002000100010&lng=es&nrm=iso. ISSN 0717-3458. doi: 10.4067/S0717-34582002000100010
  26. Roehrs M, Valentini J, Bulcão R, Moreira JC, Biesalski H, Limberger RP, Grune T, Garcia SC (2009) The plasma retinol levels as pro-oxidant/oxidant agents in haemodialysis patients. Nephrol Dial Transplant 24:2212–2218CrossRefPubMedGoogle Scholar
  27. Sherman F, Fink GR, Hicks JB (1986) Methods in yeast genetics. Cold Spirng Harbor, NYGoogle Scholar
  28. Zanotto-Filho A, Schröder R, Moreira JC (2008) Xanthine oxidase-dependent ROS production mediates vitamin A pro-oxidant effects in cultured Sertoli cells. Free Radic Res 42:593–601CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Rafael Roehrs
    • 1
  • Daniela R. J. Freitas
    • 2
  • Aoi Masuda
    • 2
  • João A. P. Henriques
    • 1
    • 3
  • Temenouga N. Guecheva
    • 1
  • Ana-Ligia L. P. Ramos
    • 1
  • Jenifer Saffi
    • 1
    • 3
  1. 1.Departamento de BiofísicaIB/UFRGSPorto AlegreBrazil
  2. 2.Centro de Biotecnologia do Estado do Rio Grande do SulPorto AlegreBrazil
  3. 3.Laboratório de Genética ToxicológicaUniversidade Luterana do BrasilCanoasBrazil

Personalised recommendations