Archives of Microbiology

, 192:57 | Cite as

The putative Bacillus subtilis l,d-transpeptidase YciB is a lipoprotein that localizes to the cell poles in a divisome-dependent manner

Original Paper

Abstract

Cell wall synthesis in bacteria is spatially organized by cytoskeletal structures. Common to all cell wall-bearing bacteria, the cytokinetic machinery localizes the cell wall synthesis to the site of septation. Recently, MinJ, a new component of the cytokinetic machinery, or divisome, of Bacillus subtilis has been described. MinJ is part of the division site selection system but also essential for correct assembly of the divisome. Here, I used the isolated PDZ domain of MinJ for co-elution experiments. One of the proteins that co-eluted was the so far uncharacterized, putative l,d-transpeptidase protein YciB. Evidence is shown that YciB localizes to the cell poles. YciB localization depends on the existence of a mature divisome, suggesting that l,d-transpeptidases are, like penicillin-binding proteins, part of the divisome.

Keywords

l,d-transpeptidase YciB Cell division Protein localization Peptidoglycan synthesis Lipoprotein 

Abbreviations

BSA

Bovine serum albumin

DAPI

4′,6-diamidino-2-phenylindole

EDTA

Ethylenediaminetetraacetic acid

FITC

Fluorescein isothiocyanate

GFP

Green fluorescent protein

IPTG

Isopropyl β-d-1-thiogalactopyranoside

LDAO

N-dodecyl-N,N-dimethylamine-N-oxide

MIC

Minimum inhibitory concentration

PAGE

Polyacrylamide gel electrophoresis

PBP

Penicillin-binding protein

PBS

Phosphate-buffered saline

PG

Peptidoglycan/murein

PMF

Peptide-mass fingerprinting

SDS

Sodium dodecyl sulfate

Notes

Acknowledgments

I thank Anja Wittmann for the excellent technical support and Frank Bürmann for the kind gift of purified GFP-His. I thank Catriona Donovan for critical reading of the manuscript. Dr. Reinhard Krämer is acknowledged for his generous support, and funding by the Deutsche Forschungsgemeinschaft (DFG, SFB 635) is acknowledged.

References

  1. Adams DW, Errington J (2009) Bacterial cell division: assembly, maintenance and disassembly of the Z ring. Nat Rev Microbiol 7:642–653CrossRefPubMedGoogle Scholar
  2. Altschul SF et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402CrossRefPubMedGoogle Scholar
  3. Barna JC, Williams DH (1984) The structure and mode of action of glycopeptide antibiotics of the vancomycin group. Annu Rev Microbiol 38:339–357CrossRefPubMedGoogle Scholar
  4. Biarrotte-Sorin S et al (2006) Crystal structure of a novel beta-lactam-insensitive peptidoglycan transpeptidase. J Mol Biol 359:533–538CrossRefPubMedGoogle Scholar
  5. Bielnicki J, Devedjiev Y, Derewenda U, Dauter Z, Joachimiak A, Derewenda ZS (2006) B. subtilis YkuD protein at 2.0 Å resolution: insights into the structure and function of a novel, ubiquitous family of bacterial enzymes. Proteins 62:144–151CrossRefPubMedGoogle Scholar
  6. Blum H, Beier H, Gross HJ (1987) Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis 8:93–99CrossRefGoogle Scholar
  7. Bramkamp M, Emmins R, Weston L, Donovan C, Daniel RA, Errington J (2008) A novel component of the division-site selection system of Bacillus subtilis and a new mode of action for the division inhibitor MinCD. Mol Microbiol 70:1556–1569CrossRefPubMedGoogle Scholar
  8. Carballido-Lopez R, Formstone A (2007) Shape determination in Bacillus subtilis. Curr Opin Microbiol 10:611–616CrossRefPubMedGoogle Scholar
  9. Cremniter J et al (2006) Novel mechanism of resistance to glycopeptide antibiotics in Enterococcus faecium. J Biol Chem 281:32254–32262CrossRefPubMedGoogle Scholar
  10. Daniel RA, Errington J (2003) Control of cell morphogenesis in bacteria: two distinct ways to make a rod-shaped cell. Cell 113:767–776CrossRefPubMedGoogle Scholar
  11. Errington J, Daniel RA, Scheffers DJ (2003) Cytokinesis in bacteria. Microbiol Mol Biol Rev 67:52–65CrossRefPubMedGoogle Scholar
  12. Firczuk M, Bochtler M (2007) Folds and activities of peptidoglycan amidases. FEMS Microbiol Rev 31:676–691CrossRefPubMedGoogle Scholar
  13. Gaballa A, Wang T, Ye RW, Helmann JD (2002) Functional analysis of the Bacillus subtilis Zur regulon. J Bacteriol 184:6508–6514CrossRefPubMedGoogle Scholar
  14. Gouet P, Courcelle E, Stuart DI, Metoz F (1999) ESPript: analysis of multiple sequence alignments in PostScript. Bioinformatics 15:305–308CrossRefPubMedGoogle Scholar
  15. Harry EJ, Pogliano K, Losick R (1995) Use of immunofluorescence to visualize cell-specific gene expression during sporulation in Bacillus subtilis. J Bacteriol 177:3386–3393PubMedGoogle Scholar
  16. Höltje JV (1998) Growth of the stress-bearing and shape-maintaining murein sacculus of Escherichia coli. Microbiol Mol Biol Rev 62:181–203PubMedGoogle Scholar
  17. Jemth P, Gianni S (2007) PDZ domains: folding and binding. Biochemistry 46:8701–8708CrossRefPubMedGoogle Scholar
  18. Kelley LA, MacCallum RM, Sternberg MJ (2000) Enhanced genome annotation using structural profiles in the program 3D-PSSM. J Mol Biol 299:499–520CrossRefPubMedGoogle Scholar
  19. Kodama T, Takamatsu H, Asai K, Ogasawara N, Sadaie Y, Watabe K (2000) Synthesis and characterization of the spore proteins of Bacillus subtilis YdhD, YkuD, and YkvP, which carry a motif conserved among cell wall binding proteins. J Biochem 128:655–663PubMedGoogle Scholar
  20. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685CrossRefPubMedGoogle Scholar
  21. Larkin MA et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948CrossRefPubMedGoogle Scholar
  22. Lavollay M et al (2009) The beta-lactam-sensitive D, d-carboxypeptidase activity of Pbp4 controls the l,d and d,d transpeptidation pathways in Corynebacterium jeikeium. Mol Microbiol 74:650–661CrossRefPubMedGoogle Scholar
  23. Lewis PJ, Marston AL (1999) GFP vectors for controlled expression and dual labelling of protein fusions in Bacillus subtilis. Gene 227:101–110CrossRefPubMedGoogle Scholar
  24. Magnet S et al (2007a) Specificity of l,d-transpeptidases from gram-positive bacteria producing different peptidoglycan chemotypes. J Biol Chem 282:13151–13159CrossRefPubMedGoogle Scholar
  25. Magnet S et al (2007b) Identification of the l,d-transpeptidases responsible for attachment of the Braun lipoprotein to Escherichia coli peptidoglycan. J Bacteriol 189:3927–3931CrossRefPubMedGoogle Scholar
  26. Mainardi JL, Legrand R, Arthur M, Schoot B, van Heijenoort J, Gutmann L (2000) Novel mechanism of beta-lactam resistance due to bypass of DD-transpeptidation in Enterococcus faecium. J Biol Chem 275:16490–16496CrossRefPubMedGoogle Scholar
  27. Mainardi JL et al (2005) A novel peptidoglycan cross-linking enzyme for a beta-lactam-resistant transpeptidation pathway. J Biol Chem 280:38146–38152CrossRefPubMedGoogle Scholar
  28. Mainardi JL, Villet R, Bugg TD, Mayer C, Arthur M (2008) Evolution of peptidoglycan biosynthesis under the selective pressure of antibiotics in Gram-positive bacteria. FEMS Microbiol Rev 32:386–408CrossRefPubMedGoogle Scholar
  29. Partridge SR, Errington J (1993) The importance of morphological events and intercellular interactions in the regulation of prespore-specific gene expression during sporulation in Bacillus subtilis. Mol Microbiol 8:945–955CrossRefPubMedGoogle Scholar
  30. Patrick JE, Kearns DB (2008) MinJ (YvjD) is a topological determinant of cell division in Bacillus subtilis. Mol Microbiol 70:1166–1179CrossRefPubMedGoogle Scholar
  31. Ponting CP, Phillips C, Davies KE, Blake DJ (1997) PDZ domains: targeting signalling molecules to sub-membranous sites. Bioessays 19:469–479CrossRefPubMedGoogle Scholar
  32. Pugsley AP, Cole ST (1987) An unmodified form of the ColE2 lysis protein, an envelope lipoprotein, retains reduced ability to promote colicin E2 release and lysis of producing cells. J Gen Microbiol 133:2411–2420PubMedGoogle Scholar
  33. Scheffers DJ, Pinho MG (2005) Bacterial cell wall synthesis: new insights from localization studies. Microbiol Mol Biol Rev 69:585–607CrossRefPubMedGoogle Scholar
  34. Scheffers DJ, Jones LJ, Errington J (2004) Several distinct localization patterns for penicillin-binding proteins in Bacillus subtilis. Mol Microbiol 51:749–764CrossRefPubMedGoogle Scholar
  35. Siu LK (2002) Antibiotics: action and resistance in gram-negative bacteria. J Microbiol Immunol Infect 35:1–11PubMedGoogle Scholar
  36. Tjalsma H, Bolhuis A, Jongbloed JD, Bron S, van Dijl JM (2000) Signal peptide-dependent protein transport in Bacillus subtilis: a genome-based survey of the secretome. Microbiol Mol Biol Rev 64:515–547CrossRefPubMedGoogle Scholar
  37. Vagner V, Dervyn E, Ehrlich SD (1998) A vector for systematic gene inactivation in Bacillus subtilis. Microbiology 144(Pt 11):3097–3104CrossRefPubMedGoogle Scholar
  38. van Heijenoort J (2001) Formation of the glycan chains in the synthesis of bacterial peptidoglycan. Glycobiology 11:25R–36RCrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Institute for BiochemistryUniversity of CologneCologneGermany

Personalised recommendations