Archives of Microbiology

, Volume 191, Issue 12, pp 885–894 | Cite as

Mixotrophic metabolism in Burkholderia kururiensis subsp. thiooxydans subsp. nov., a facultative chemolithoautotrophic thiosulfate oxidizing bacterium isolated from rhizosphere soil and proposal for classification of the type strain of Burkholderia kururiensis as Burkholderia kururiensis subsp. kururiensis subsp. nov.

  • Rangasamy Anandham
  • Pandiyan Indira Gandhi
  • Soon Wo Kwon
  • Tong Min Sa
  • Yong Ki Kim
  • Hyeong Jin Jee
Original Paper


A thiosulfate-oxidizing facultative chemolithoautotrophic Burkholderia sp. strain ATSB13T was previously isolated from rhizosphere soil of tobacco plant. Strain ATSB13T was aerobic, Gram-staining-negative, rod shaped and motile by means of sub-terminal flagellum. Strain ATSB13T exhibited mixotrophic growth in a medium containing thiosulfate plus acetate. A phylogenetic study based on 16S rRNA gene sequence analysis indicated that strain ATSB13T was most closely related to Burkholderia kururiensis KP23T (98.7%), Burkholderia tuberum STM678T (96.5%) and Burkholderia phymatum STM815T (96.4%). Chemotaxonomic data [G+C 64.0 mol%, major fatty acids, C18:1 ω7c (28.22%), C16:1 ω7c/15 iso 2OH (15.15%), and C16:0 (14.91%) and Q-8 as predominant respiratory ubiquinone] supported the affiliation of the strain ATSB13T within the genus Burkholderia. Though the strain ATSB13T shared high 16S rRNA gene sequence similarity with the type strain of B. kururiensis but considerably distant from the latter in terms of several phenotypic and chemotaxonomic characteristics. DNA–DNA hybridization between strain ATSB13T and B. kururiensis KP23T was 100%, and hence, it is inferred that strain ATSB13T is a member of B. kururiensis. On the basis of data obtained from this study, we propose that B. kururiensis be subdivided into B. kururiensis subsp. kururiensis subsp. nov. (type strain KP23T = JCM 10599T = DSM 13646T) and B. kururiensis subsp. thiooxydans subsp. nov. (type strain ATSB13T = KACC 12758T).


Burkholderia kururiensis subsp. kururiensis Burkholderia kururiensis subsp. thiooxydans Mixotrophic growth Reduced sulfur compounds oxidation  Thiosulfate-oxidizing bacteria 



RA thanks Rural Development Administration (RDA), Republic of Korea for awarding post doctoral fellowship. This study was supported by National Academy of Agricultural Science, RDA, Republic of Korea.

Supplementary material

203_2009_517_MOESM1_ESM.doc (103 kb)
(DOC 103 kb)


  1. Anandham R, Indira Gandhi P, Madhaiyan M, Kim KA, Yim WJ, Saravanan VS, Chung JB, Sa TM (2007) Thiosulfate oxidation and mixotrophic growth of Methylobacterium oryzae. Can J Microbiol 53:869–876CrossRefPubMedGoogle Scholar
  2. Anandham R, Indira Gandhi P, Madhaiyan M, Sa TM (2008a) Potential plant growth promoting traits and bioacidulation of rock phosphate by thiosulfate oxidizing bacteria isolated from crop plants. J Basic Microbiol 48:439–447CrossRefPubMedGoogle Scholar
  3. Anandham R, Indira Gandhi P, Madhaiyan M, Ryu HY, Jee HJ, Sa TM (2008b) Chemolithoautotrophic oxidation of thiosulfate and phylogenetic distribution of sulfur oxidation gene (soxB) in rhizobacteria isolated from crop plants. Res Microbiol 159:579–589CrossRefPubMedGoogle Scholar
  4. Brenner DJ, Krieg NR, Staley JT (2005) The Proteobacteria. In: Garrity GM (ed) Bergey’s manual of systematic bacteriology. Springer, New York, pp 575–623Google Scholar
  5. Christensen H, Angen Ø, Mutters R, Olsen JE, Bisgaard M (2000) DNA–DNA hybridization determined in micro-wells using covalent attachment of DNA. Int J Syst Evol Microbiol 50:1095–1102PubMedGoogle Scholar
  6. Chun J, Lee JH, Jung Y, Kim M, Kim S, Kim BK, Lim YW (2007) EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261CrossRefPubMedGoogle Scholar
  7. Coenye T, Falsen E, Hoste B, Ohlén M, Goris J, Govan JRW, Gillis M, Vandamme P (2000) Description of Pandoraea gen. nov. with Pandoraea apista sp. nov., Pandoraea pulmonicola sp. nov., Pandoraea pnomenusa sp. nov., Pandoraea sputorum sp. nov., and Pandoraea norimbergensis comb. nov. Int J Syst Evol Microbiol 50:887–899PubMedGoogle Scholar
  8. Compant S, Reiter B, Sessitsch A, Nowak J, Clement C, Barka EA (2005) Endophytic colonization of Vitis vinifera L. by plant growth-promoting bacterium Burkholderia sp. strain PsJN. Appl Environ Microbiol 71:1685–1693CrossRefPubMedGoogle Scholar
  9. Estrada-de los Santos P, Bustillos-Cristales R, Caballero-Mellado J (2001) Burkholderia, a genus rich in plant-associated nitrogen fixers with wide environmental and geographic distribution. Appl Environ Microbiol 67:2790–2798CrossRefPubMedGoogle Scholar
  10. Ezaki T, Hashimoto Y, Yabuuchi E (1989) Fluorometric deoxyribonucleic acid–deoxyribonucleic acid hybridization in micro-dilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229Google Scholar
  11. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  12. Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416CrossRefGoogle Scholar
  13. Friedrich CG, Mitrenga G (1981) Oxidation of thiosulfate by Paracoccus denitrificans and other hydrogen bacteria. FEMS Microbiol Lett 10:209–212CrossRefGoogle Scholar
  14. Friedrich CG, Rother D, Bardischewsky F, Quentmeier A, Fischer J (2001) Oxidation of inorganic sulfur compounds by bacteria: emergence of a common mechanism? Appl Environ Microbiol 67:2873–2882CrossRefPubMedGoogle Scholar
  15. Gerhardt P, Murray RGE, Wood WA, Krieg NR (1994) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, DCGoogle Scholar
  16. Gottschal JC, Kuenen JG (1980) Mixotrophic growth of Thiobacillus A2 on acetate and thiosulfate as growth limiting substrates in the chemostat. Arch Microbiol 126:33–42CrossRefGoogle Scholar
  17. Groth I, Schumann P, Weiss N, Martin K, Rainey FA (1996) Agrococcus jenensis gen. nov., sp. nov., a new genus of actinomycetes with diaminobutyric acid in the cell wall. Int J Syst Bacteriol 46:234–239PubMedGoogle Scholar
  18. Hensen D, Sperling D, Trüper HG, Brune DC, Dahl C (2006) Thiosulfate oxidation in the phototrophic sulfur bacterium Allochromatium vinosum. Mol Microbiol 62:794–810CrossRefPubMedGoogle Scholar
  19. Holmes B, Costas M, Ganner M, On SL, Stevens M (1994) Evaluation of Biolog system for identification of some gram-negative bacteria of clinical importance. J Clin Microbiol 32:1970–1975PubMedGoogle Scholar
  20. Jensen KT, Frederiksen W, Hickman-Brenner FW, Steigerwalt AG, Riddle CF, Brenner DJ (1992) Recognition of Morganella subspecies, with proposal of Morganella morganii subsp. morganii subsp. nov. and Morganella morganii subsp. sibonii subsp. nov. Int J Syst Bacteriol 42:613–620PubMedGoogle Scholar
  21. Jung SJ, Jang KH, Shin EH, Park SK, Park CH (2005) Characteristics of sulfur oxidation by a newly isolated Burkholderia spp. J Microbiol Biotechnol 15:716–721Google Scholar
  22. Katayama Y, Uchino Y, Wood AP, Kelly DP (2006) Confirmation of Thiomonas delicata (formerly Thiomonas delicatus) as a distinct species of the genus Thiomonas Moreira and Amils 1997 with comments on some species currently assigned to genus. Int J Syst Evol Microbiol 56:2553–2557CrossRefPubMedGoogle Scholar
  23. Kelly DP (1989) Physiology and biochemistry of unicellular sulfur bacteria. In: Schlegel HG, Bowien B (eds) Autotrophic bacteria. Springer, Berlin, pp 193–217Google Scholar
  24. Kelly DP, Wood AP (1994) Synthesis and determination of thiosulfate and polythionates. Methods Enzymol 243:475–501CrossRefGoogle Scholar
  25. Kelly DP, Wood AP (2000) Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen. nov., Halothiobacillus gen. nov. and Thermithiobacillus gen. nov. Int J Syst Evol Microbiol 50:511–516PubMedGoogle Scholar
  26. Kelly DP, Mc Donald IR, Wood AP (2000) Proposal for the reclassification of Thiobacillus novellus as Starkeya novella gen. nov., comb. nov., in the α-subclass of the Proteobacteria. Int J Syst Evol Microbiol 50:1797–1802PubMedGoogle Scholar
  27. Kolmert Å, Wikström P, Hallberg KB (2000) A fast and simple turbidometric method for the determination of sulfate-reducing bacterial cultures. J Microbiol Methods 41:179–184CrossRefPubMedGoogle Scholar
  28. Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163CrossRefPubMedGoogle Scholar
  29. Lahiri C, Mandal S, Ghosh W, Dam B, Roy P (2006) A novel gene cluster soxSRT is essential for the chemolithotrophic oxidation of thiosulfate and tetrathionate by Pseudaminobacter salicylatoxidans KCT001. Curr Microbiol 52:267–273CrossRefPubMedGoogle Scholar
  30. Li W, Roberts DP, Meyer SLF, Lohrke S, Lumdsen RD, Hebbar KP (2002) Broad spectrum anti-biotic activity and disease suppression by the potential biocontrol agent Burkholderia ambifaria BC-F. Crop Prot 21:129–135CrossRefGoogle Scholar
  31. Lowry OH, Rosebrough A, Farr AL, Randal RJ (1951) Protein measurement with folin phenol reagent. J Biol Chem 193:265–275PubMedGoogle Scholar
  32. Matin A (1978) Organic nutrition of chemolithotrophic bacteria. Ann Rev Microbiol 32:433–468CrossRefGoogle Scholar
  33. Mesbah M, Premachandran U, Whitman WB (1989) Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Evol Microbiol 39:159–167CrossRefGoogle Scholar
  34. Meyer B, Imhoff JF, Kuever J (2007) Molecular analysis of the distribution and phylogeny of the soxB among sulfur-oxidizing bacteria-evolution of the Sox sulfur oxidation enzyme system. Environ Microbiol 9:2957–2977CrossRefPubMedGoogle Scholar
  35. Moore DD (1995) Preparation and analysis of DNA. In: Ausubel FW, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (eds) Current protocols in molecular biology. Wiley, New York, pp 2–11Google Scholar
  36. Moreira D, Amils R (1997) Phylogeny of Thiobacillus cuprinus and other mixotrophic Thiobacilli: Proposal for Thiomonas gen. nov. Int Syst Bacteriol 47:522–528CrossRefGoogle Scholar
  37. Mukhopadhyaya PN, Deb C, Lahiri C, Roy P (2000) A soxA gene encoding a diheme cytochrome c and a sox locus, essential for sulfur oxidation in new sulfur lithotrophic bacterium. J Bacteriol 182:4278–4287CrossRefPubMedGoogle Scholar
  38. Olsen GJ, Matsuda H, Hagstrom R, Overbeek R (1994) fastDNAml: a tool for construction of phylogenetic trees of DNA sequences using maximum likelihood. CABIOS 10:41–48PubMedGoogle Scholar
  39. Paarup M, Friedrich MW, Tindall BJ, Finster K (2006) Characterization of the psychrotolerant acetogen strain SyrA5 and the emended description of the species Acetobacterium carbinolicum. Antonie van Leeuwenhoek 89:55–69CrossRefPubMedGoogle Scholar
  40. Padden AN, Kelly DP, Wood AP (1998) Chemolithoautotrophy and mixotrophy in the thiophene-2-carboxylic acid-utilizing Xanthobacter tagetidis. Arch Microbiol 169:249–256CrossRefPubMedGoogle Scholar
  41. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  42. Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101. Newark, DE: MIDIGoogle Scholar
  43. Spring S, Kämper P, Schleifer HS (2001) Limnobacter thiooxidans gen. nov., sp. nov., a novel thiosulfate-oxidizing bacterium isolated from freshwater lake sediment. Int J Syst Evol Microbiol 51:1463–1470PubMedGoogle Scholar
  44. Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849CrossRefGoogle Scholar
  45. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680CrossRefPubMedGoogle Scholar
  46. Vandamme P, Goris J, Chen WM, de Vos P, Willems A (2002) Burkholderia tuberum sp. nov. and Burkholderia phymatum sp. nov. nodulate the roots of tropical legumes. Syst Appl Microbiol 25:507–512CrossRefPubMedGoogle Scholar
  47. Viallard V, Poirier I, Cournoyer B, Haurat J, Wiebkin S, Ophel-Keller K, Balandreau J (1998) Burkholderia graminis sp. nov., a rhizospheric Burkholderia species, and reassessment of [Pseudomonas] phenazinium, [Pseudomonas] pyrrocinia and [Pseudomonas] glathei as Burkholderia. Int J Syst Evol Microbiol 48:549–563CrossRefGoogle Scholar
  48. Wayne LG, Brenner DJ, Colwell RR et al (1987) Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464CrossRefGoogle Scholar
  49. Wittke R, Ludwig W, Peiffer S, Kleiner D (1997) Isolation and characterization of Burkholderia norimbergensis sp. nov., a mildly alkaliphilic sulfur oxidizer. Syst Appl Microbiol 20:549–553Google Scholar
  50. Zhang H, Hanada S, Shigematsu T, Shibuya K, Kamagata Y, Kanagawa T, Kurane R (2000) Burkholderia kururiensis sp. nov., a trichloroethylene (TCE)-degrading bacterium isolated from an aquifer polluted with TCE. Int J Syst Evol Microbiol 50:743–749PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Rangasamy Anandham
    • 1
  • Pandiyan Indira Gandhi
    • 2
  • Soon Wo Kwon
    • 3
  • Tong Min Sa
    • 2
  • Yong Ki Kim
    • 1
  • Hyeong Jin Jee
    • 1
  1. 1.Organic Agriculture Division, National Academy of Agricultural ScienceRural Development Administration (RDA)SuwonRepublic of Korea
  2. 2.Department of Agricultural ChemistryChungbuk National UniversityCheongjuRepublic of Korea
  3. 3.Korean Agricultural Culture Collection (KACC) Rural Development Administration (RDA)SuwonRepublic of Korea

Personalised recommendations