Advertisement

Archives of Microbiology

, 191:853 | Cite as

Multiple antioxidant proteins protect Chlorobaculum tepidum against oxygen and reactive oxygen species

  • Hui Li
  • Sara Jubelirer
  • Amaya M. Garcia Costas
  • Niels-Ulrik Frigaard
  • Donald A. BryantEmail author
Original Paper

Abstract

The genome of the green sulfur bacterium Chlorobaculum (Cba.) tepidum, a strictly anaerobic photolithoautotroph, is predicted to encode more than ten genes whose products are potentially involved in protection from reactive oxygen species and an oxidative stress response. The encoded proteins include cytochrome bd quinol oxidase, NADH oxidase, rubredoxin oxygen oxidoreductase, several thiol peroxidases, alkyl hydroperoxide reductase, superoxide dismutase, methionine sulfoxide reductase, and rubrerythrin. To test the physiological functions of some of these proteins, ten genes were insertionally inactivated. Wild-type Cba. tepidum cells were very sensitive to oxygen in the light but were remarkably resistant to oxygen in the dark. When wild-type and mutant cells were subjected to air for various times under dark or light condition, significant decreases in viability were detected in most of the mutants relative to wild type. Treatments with hydrogen peroxide (H2O2), tert-butyl hydroperoxide (t-BOOH) and methyl viologen resulted in more severe effects in most of the mutants than in the wild type. The results demonstrated that these putative antioxidant proteins combine to form an effective defense against oxygen and reactive oxygen species. Reverse-transcriptase polymerase chain reaction studies showed that the genes with functions in oxidative stress protection were constitutively transcribed under anoxic growth conditions.

Keywords

Green sulfur bacteria Oxidative stress Chlorobaculum tepidum Photosynthesis 

Notes

Acknowledgments

This research was supported by grant DE-FG-2-94ER20137 to D.A.B. from the US Department of Energy. Sequence data for the Cba. tepidum genome and for the other green sulfur bacterial genomes were obtained from the Joint Genome Institute Web site at http://www.jgi.doe.gov/. Sequencing of these genomes was accomplished with support from the US Department of Energy and grant MCB-0523100 from the National Science Foundation to D.A.B.

References

  1. Alphey MS, Bond CS, Tetaud E, Fairlamb AH, Hunter WN (2000) The structure of reduced tryparedoxin peroxidase reveals a decamer and insight into reactivity of 2Cys-peroxiredoxins. J Mol Biol 300:903–916CrossRefPubMedGoogle Scholar
  2. Benov L, Kredich NM, Fridovich I (1996) The mechanism of auxotrophy for sulfur-containing amino acids imposed upon Escherichia coli by superoxide. J Biol Chem 271:21037–21040CrossRefPubMedGoogle Scholar
  3. Blankenship RE, Cheng P, Causgrove TP, Brune DC, Wang S-H, Choh JU, Wang J (1993) Redox regulation of energy transfer efficiency in antennas of green photosynthetic bacteria. Photochem Photobiol 57:103–107CrossRefPubMedGoogle Scholar
  4. Briviba K, Klotz LO, Sies H (1997) Toxic and signaling effects of photochemically or chemically generated singlet oxygen in biological systems. Biol Chem 378:1259–1265PubMedGoogle Scholar
  5. Carlioz A, Touati D (1986) Isolation of superoxide dismutase mutants in Escherichia coli: is superoxide dismutase necessary for aerobic life? EMBO J 5:623–630PubMedGoogle Scholar
  6. Cha MK, Kim WC, Lim CJ, Kim K, Kim IH (2004) Escherichia coli periplasmic thiol peroxidase acts as lipid hydroperoxide peroxidase and the principal antioxidative function during anaerobic growth. J Biol Chem 279:8769–8778CrossRefPubMedGoogle Scholar
  7. Chen L, Liu MY, LeGall J, Fareleira P, Santos H, Xavier AV (1993) Rubredoxin oxidase, a new flavo-hemo-protein, is the site of oxygen reduction to water by the “strict anaerobe” Desulfovibrio gigas. Biochem Biophys Res Commun 193:100–105CrossRefPubMedGoogle Scholar
  8. Choi J, Choi S, Choi J, Cha MK, Kim IH, Shin W (2003) Crystal structure of Escherichia coli thiol peroxidase in the oxidized state: insights into intramolecular disulfide formation and substrate binding in atypical 2-Cys peroxiredoxins. J Biol Chem 278:49478–49486CrossRefPubMedGoogle Scholar
  9. Claiborne A, Yeh JI, Mallett TC, Luba J, Crane EJ III, Charrier V, Parsonage D (1999) Protein-sulfenic acids: diverse roles for an unlikely player in enzyme catalysis and redox regulation. Biochemistry 38:15407–15416CrossRefPubMedGoogle Scholar
  10. Das A, Silaghi-Dumitrescu R, Ljungdahl LG, Kurtz DM Jr (2005) Cytochrome bd oxidase, oxidative stress, and dioxygen tolerance of the strictly anaerobic bacterium Moorella thermoacetica. J Bacteriol 187:2020–2029CrossRefPubMedGoogle Scholar
  11. Dos Santos WG, Pacheco I, Liu MY, Teixeira M, Xavier AV, LeGall J (2000) Purification and characterization of an iron superoxide dismutase and a catalase from the sulfate-reducing bacterium Desulfovibrio gigas. J Bacteriol 182:796–804CrossRefPubMedGoogle Scholar
  12. Eisen JA, Nelson KE, Paulsen IT, Heidelberg JF, Wu M, Dodson RJ, Deboy R, Gwinn ML, Nelson WC, Haft DH, Hickey EK, Peterson JD, Durkin AS, Kolonay JL, Yang F, Holt I, Umayam LA, Mason T, Brenner M, Shea TP, Parksey D, Nierman WC, Feldblyum TV, Hansen CL, Craven MB, Radune D, Vamathevan J, Khouri H, White O, Gruber TM, Ketchum KA, Venter JC, Tettelin H, Bryant DA, Fraser CM (2002) The complete genome sequence of Chlorobium tepidum TLS, a photosynthetic, anaerobic, green-sulfur bacterium. Proc Natl Acad Sci USA 99:9509–9514CrossRefPubMedGoogle Scholar
  13. Flint D, Tuminello J, Emptage M (1993) The inactivation of Fe-S cluster containing hydro-lyses by superoxide. J Biol Chem 268:22369–22376PubMedGoogle Scholar
  14. Frazão C, Silva G, Gomes CM, Matias P, Coelho R, Sieker L, Macedo S, Liu MY, Oliveira S, Teixeira M, Xavier AV, Rodrigues-Pousada C, Carrondo MA, LeGall J (2000) Structure of a dioxygen reduction enzyme from Desulfovibrio gigas. Nat Struct Biol 7:1041–1045CrossRefPubMedGoogle Scholar
  15. Fridovich I (1995) Superoxide radical and superoxide dismutases. Annu Rev Biochem 64:97–112CrossRefPubMedGoogle Scholar
  16. Benov L, Fridovich I (1999) Why superoxide imposes an aromatic amino acid auxotrophy on Escherichia coli. The transketolase connection. J Biol Chem 274:4202–4206CrossRefPubMedGoogle Scholar
  17. Frigaard N-U, Bryant DA (2001) Chromosomal gene inactivation in the green sulfur bacterium Chlorobium tepidum by natural transformation. Appl Environ Microbiol 67:2538–2544CrossRefPubMedGoogle Scholar
  18. Frigaard N-U, Bryant DA (2006) Chlorosomes: antenna organelles in green photosynthetic bacteria. In: Shively JM (ed) Microbiology monographs, vol 2 complex intracellular structures in Prokaryotes. Springer, Berlin, pp 79–114CrossRefGoogle Scholar
  19. Frigaard N-U, Matsuura K (1999) Oxygen uncouples light absorption by the chlorosome antenna and photosynthetic electron transfer in the green sulfur bacterium Chlorobium tepidum. Biochim Biophys Acta 1412:108–117CrossRefPubMedGoogle Scholar
  20. Frigaard N-U, Maresca JA, Yunker CE, Jones AD, Bryant DA (2004a) Genetic manipulation of carotenoid biosynthesis in the green sulfur bacterium Chlorobium tepidum. J Bacteriol 186:5210–5220CrossRefPubMedGoogle Scholar
  21. Frigaard N-U, Sakuragi Y, Bryant DA (2004b) Gene inactivation in the cyanobacterium Synechococcus sp. PCC 7002 and the green sulfur bacterium Chlorobium tepidum using in vitro-made DNA constructs and natural transformation. Meth Mol Biol 274:325–340Google Scholar
  22. Gennis RB, Stewart V (1996) Respiration. In: Neidhardt FC (ed) Escherichia coli and Salmonella: cellular and molecular biology. ASM Press, Washington, pp 217–261Google Scholar
  23. Hauska G, Schoedl T, Remigy H, Tsiotis G (2001) The reaction center of green sulfur bacteria. Biochim Biophys Acta 1507:260–277CrossRefPubMedGoogle Scholar
  24. Hillmann F, Fischer R-J, Saint-Prix F, Girbal L, Bahl H (2008) PerR acts as a switch for oxygen tolerance in the strict anaerobe Clostridium acetobutylicum. Mol Microbiol 68:848–860CrossRefPubMedGoogle Scholar
  25. Hirotsu S, Abe Y, Okada K, Nagahara N, Hori H, Nishino T, Hakoshima T (1999) Crystal structure of a multifunctional 2-Cys peroxiredoxin heme-binding protein 23 kDa/proliferation-associated gene product. Proc Natl Acad Sci USA 96:12333–12338CrossRefPubMedGoogle Scholar
  26. Iino T, Mori K, Uchino Y, Nakagawa T, Harayama S, Suzuki K (2009) Ignavibacterium album gen. nov., sp. nov., a moderately thermophilic anaerobic bacterium isolated from microbial mats at a terrestrial hot spring in Japan and proposal of Ignavibacteria classis nov. for a novel lineage at the periphery of green sulfur bacteria. Int J Syst Evol Microbiol. doi: 10.1099/ijs.0.012484-0
  27. Ikonen TP, Li H, Psencik J, Laurinmäki PA, Butcher SJ, Frigaard N-U, Serimaa RE, Bryant DA, Tuma R (2007) X-ray scattering and electron cryomicroscopy study on the effect of carotenoid biosynthesis to the structure of Chlorobium tepidum chlorosomes. Biophys J 93:620–628CrossRefPubMedGoogle Scholar
  28. Imhoff JF (2003) Phylogenetic taxonomy of the family Chlorobiaceae on the basis of 16S rRNA and fmo (Fenna–Matthews–Olson protein) gene sequences. Int J Syst Evol Microbiol 53:941–951CrossRefPubMedGoogle Scholar
  29. Imlay JA (2002) How oxygen damages microbes: oxygen tolerance and obligate anaerobiosis. Adv Microb Physiol 46:111–153CrossRefPubMedGoogle Scholar
  30. Imlay JA (2003) Pathways of oxidative damage. Annu Rev Microbiol 57:395–418CrossRefPubMedGoogle Scholar
  31. Imlay JA (2006) Iron-sulphur clusters and the problem with oxygen. Mol Microbiol 59:1073–1082CrossRefPubMedGoogle Scholar
  32. Imlay JA (2008) How obligatory is anaerobiosis? Mol Microbiol 68:801–804CrossRefPubMedGoogle Scholar
  33. Seaver LC, Imlay JA (2001) Alkyl hydroperoxide reductase is the primary scavenger of endogenous hydrogen peroxide in Escherichia coli. J Bacteriol 183:7173–7181CrossRefPubMedGoogle Scholar
  34. Imlay JA, Linn S (1988) Toxic DNA damage by hydrogen peroxide through the Fenton reaction in vivo and in vitro. Science 240:640–642CrossRefPubMedGoogle Scholar
  35. Jenney FE Jr, Verhagen MF, Cui X, Adams MW (1999) Anaerobic microbes: oxygen detoxification without superoxide dismutase. Science 286:306–309CrossRefPubMedGoogle Scholar
  36. Jeong W, Cha MK, Kim IH (2000) Thioredoxin-dependent hydroperoxide peroxidase activity of bacterioferritin comigratory protein (BCP) as a new member of the thiol-specific antioxidant protein (TSA)/Alkyl hydroperoxide peroxidase C (AhpC) family. J Biol Chem 275:2924–2930CrossRefPubMedGoogle Scholar
  37. Jeong W, Cha MK, Kim IH (2006) Identification and characterization of 1-Cys peroxiredoxin from Sulfolobus solfataricus and its involvement in the response to oxidative stress. FEBS J 273:721–731CrossRefGoogle Scholar
  38. Jiang Q, Yan YH, Hu GK, Zhang YZ (2005) Molecular cloning and characterization of a peroxiredoxin from Phanerochaete chrysosporium. Cell Mol Biol Lett 10:659–668PubMedGoogle Scholar
  39. Juty NS, Moshiri F, Merrick M, Anthony C, Hill S (1997) The Klebsiella pneumoniae cytochrome bd terminal oxidase complex and its role in microaerobic nitrogen fixation. Microbiology 143:2673–2683CrossRefPubMedGoogle Scholar
  40. Kämpf C, Pfennig N (1980) Capacity of Chromatiaceae for chemotrophic growth. Specific respiration rates of Thiocystis violacea and Chromatium vinosum. Arch Microbiol 127:125–135CrossRefGoogle Scholar
  41. Kawasaki S, Ishikura J, Chiba D, Nishino T, Niimura Y (2004) Purification and characterization of an H2O-forming NADH oxidase from Clostridium aminovalericum: existence of an oxygen-detoxifying enzyme in an obligate anaerobic bacteria. Arch Microbiol 181:324–330CrossRefPubMedGoogle Scholar
  42. Kaysser TM, Ghaim JB, Georgiou C, Gennis RB (1995) Methionine-393 is an axial ligand of the heme b 558 component of the cytochrome bd ubiquinol oxidase from Escherichia coli. Biochemistry 34:13491–13501CrossRefPubMedGoogle Scholar
  43. Kim H, Li H, Maresca JA, Bryant DA, Savikhin S (2007) Triplet exciton formation as a novel photoprotection mechanism in chlorosomes of Chlorobium tepidum. Biophys J 93:192–201CrossRefPubMedGoogle Scholar
  44. Kurtz DM Jr (2006) Avoiding high valent iron intermediates: superoxide reductase and rubrerythrin. J Inorg Biochem 100:679–693CrossRefPubMedGoogle Scholar
  45. Limauro D, Pedone E, Pirone L, Bartolucci S (2006) Identification and characterization of 1-Cys peroxiredoxin from Sulfolobus solfataricus and its involvement in the response to oxidative stress. FEBS J 273:721–731CrossRefPubMedGoogle Scholar
  46. Marklund S (1976) Spectrophotometric study of spontaneous disproportionation of superoxide anion radical and sensitive direct assay for superoxide dismutase. J Biol Chem 251:7504–7507PubMedGoogle Scholar
  47. McCord JM, Fridovich I (1969) Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244:6049–6055PubMedGoogle Scholar
  48. Mizohata E, Sakai H, Fusatomi E, Terada T, Murayama K, Shirouzu M, Yokoyama S (2005) Crystal structure of an archaeal peroxiredoxin from the aerobic hyperthermophilic crenarchaeon Aeropyrum pernix K1. J Mol Biol 354:317–329CrossRefPubMedGoogle Scholar
  49. Moshiri F, Chawla A, Maier RJ (1991a) Cloning, characterization, and expression in Escherichia coli of the genes encoding the cytochrome d oxidase complex from Azotobacter vinelandii. J Bacteriol 173:6230–6241PubMedGoogle Scholar
  50. Moshiri F, Smith EG, Taormino JP, Maier RJ (1991b) Transcriptional regulation of cytochrome d in nitrogen-fixing Azotobacter vinelandii. Evidence that up-regulation during N2 fixation is independent of nifA but dependent on ntrA. J Biol Chem 266:23169–23174PubMedGoogle Scholar
  51. Moskovitz J, Rahman MA, Strassman J, Yancey SO, Kushner SR, Brot N, Weissbach H (1995) Escherichia coli peptide methionine sulfoxide reductase gene: regulation of expression and role in protecting against oxidative damage. J Bacteriol 177:502–507PubMedGoogle Scholar
  52. Niimura Y, Nishiyama Y, Saito D, Tsuji H, Hidaka M, Miyaji T, Watanabe T, Massey V (2000) A hydrogen peroxide-forming NADH oxidase that functions as an alkyl hydroperoxide reductase in Amphibacillus xylanus. J Bacteriol 182:5046–5051CrossRefPubMedGoogle Scholar
  53. Oberley LW, Spitz DR (1984) Assay of superoxide dismutase activity in tumor tissue. Meth Enzymol 105:457–464CrossRefPubMedGoogle Scholar
  54. Wang G, Olczak AA, Walton JP, Maier RJ (2005) Contribution of the Helicobacter pylori thiol peroxidase bacterioferritin comigratory protein to oxidative stress resistance and host colonization. Infect Immun 73:378–384CrossRefPubMedGoogle Scholar
  55. Overmann J (2001) Green sulfur bacteria. In: Boone DR, Castenholz RW (eds) Bergey’s manual of systematic bacteriology, vol 1, 2nd edn. Springer, New York, pp 601–604Google Scholar
  56. Overmann J (2006) The family Chlorobiaceae. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes. Springer, New York. doi: 10.1007/0-387-30747-8_13 Google Scholar
  57. Papinutto E, Windle HJ, Cendron L, Battistutta R, Kelleher D, Zanotti G (2005) Crystal structure of alkyl hydroperoxide-reductase (AhpC) from Helicobacter pylori. Biochim Biophys Acta 1753:240–246PubMedGoogle Scholar
  58. Poole LB (2005) Bacterial defenses against oxidants: mechanistic features of cysteine-based peroxidases and their flavoprotein reductases. Arch Biochem Biophys 433:240–254CrossRefPubMedGoogle Scholar
  59. Presig O, Zufferey R, Thony-Meyer L, Hennecke H (1996) A high-affinity cbb 3-type cytochrome oxidase terminates the symbiosis-specific respiratory chain of Bradyrhizobium japonicum. J Bacteriol 178:1532–1538Google Scholar
  60. Ross RP, Claiborne A (1992) Molecular cloning and analysis of the gene encoding the NADH oxidase from Streptococcus faecalis 10C1. Comparison with NADH peroxidase and the flavoprotein disulfide reductases. J Mol Biol 227:658–671CrossRefPubMedGoogle Scholar
  61. Storz G, Imlay JA (1999) Oxidative stress. Curr Opin Microbiol 2:188–194CrossRefPubMedGoogle Scholar
  62. Sturr MG, Krulwich TA, Hicks DB (1996) Purification of a cytochrome bd terminal oxidase encoded by the Escherichia coli app locus from a Δcyo Δcyd strain complemented by genes from Bacillus firmus OF4. J Bacteriol 176:1742–1749Google Scholar
  63. Vassiliev IR, Ronan MT, Hauska G, Golbeck JH (2000) The bound electron acceptors in green sulfur bacteria: resolution of the g-tensor of the FX iron-sulfur cluster in Chlorobium tepidum. Biophys J 78:3160–3169CrossRefPubMedGoogle Scholar
  64. Wahlund TM, Madigan MT (1995) Genetic transfer by conjugation in the thermophilic green sulfur bacterium Chlorobium tepidum. J Bacteriol 177:2583–2588PubMedGoogle Scholar
  65. Wahlund TM, Woese CR, Castenholz RW, Madigan MT (1991) A thermophilic green sulfur bacterium from New Zealand hot springs, Chlorobium tepidum sp. Nov. Arch Microbiol 156:81–90CrossRefGoogle Scholar
  66. Wang J, Brune DC, Blankenship RE (1990) Effects of oxidants and reductants on the efficiency of excitation transfer in green photosynthetic bacteria. Biochim Biophys Acta 1015:457–463CrossRefPubMedGoogle Scholar
  67. Ward DE, Donnelly CJ, Mullendore ME, van der Oost J, de Vos WM, Crane EJ III (2001) The NADH oxidase from Pyrococcus furiosus. Implications for the protection of anaerobic hyperthermophiles against oxidative stress. Eur J Biochem 268:5816–5823CrossRefPubMedGoogle Scholar
  68. Winterbourn CC, Metodiewa D (1999) Reactivity of biologically important thiol compounds with superoxide and hydrogen peroxide. Free Radic Biol Med 27:322–328CrossRefPubMedGoogle Scholar
  69. Wood ZA, Schroder E, Harris JR, Poole LB (2003) Structure, mechanism and regulation of peroxiredoxins. Trends Biochem Sci 28:32–40CrossRefPubMedGoogle Scholar
  70. Yamamoto H, Miyake C, Dietz KJ, Tomizawa K, Murata N, Yokota A (1999) Thioredoxin peroxidase in the cyanobacterium Synechocystis sp. PCC 6803. FEBS Lett 447:269–273CrossRefPubMedGoogle Scholar
  71. Yoon KS, Hille R, Hemann C, Tabita FR (1999) Rubredoxin from the green sulfur bacterium Chlorobium tepidum functions as an electron acceptor for pyruvate ferredoxin oxidoreductase. J Biol Chem 274:29772–29778CrossRefPubMedGoogle Scholar
  72. Yoon KS, Bobst C, Hemann CF, Hille R, Tabita FR (2001) Spectroscopic and functional properties of novel 2[4Fe-4S] cluster-containing ferredoxins from the green sulfur bacterium Chlorobium tepidum. J Biol Chem 276:44027–44036CrossRefPubMedGoogle Scholar
  73. Yu BP (1994) Cellular defense against damage from reactive oxygen species. Physiol Rev 74:139–162PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Hui Li
    • 1
    • 3
  • Sara Jubelirer
    • 1
  • Amaya M. Garcia Costas
    • 1
  • Niels-Ulrik Frigaard
    • 2
  • Donald A. Bryant
    • 1
    Email author
  1. 1.Department of Biochemistry and Molecular Biology and Center for Biomolecular Structure and FunctionThe Pennsylvania State University University ParkUSA
  2. 2.Department of BiologyUniversity of CopenhagenCopenhagen NDenmark
  3. 3.Department of Laboratory MedicineUniversity of WashingtonSeattleUSA

Personalised recommendations