Archives of Microbiology

, 191:825 | Cite as

A new β-galactosidase with a low temperature optimum isolated from the Antarctic Arthrobacter sp. 20B: gene cloning, purification and characterization

  • Aneta Monika Białkowska
  • Hubert Cieśliński
  • Karolina Maria Nowakowska
  • Józef Kur
  • Marianna Turkiewicz
Original Paper


A psychrotrophic bacterium producing a cold-adapted β-galactosidase upon growth at low temperatures was classified as Arthrobacter sp. 20B. A genomic DNA library of strain 20B introduced into Escherichia coli TOP10F′ and screening on X-Gal (5-bromo-4-chloro-3-indolyl-β-d-galactopyranoside)-containing agar plates led to the isolation of β-galactosidase gene. The β-galactosidase gene (bgaS) encoding a protein of 1,053 amino acids, with a calculated molecular mass of 113,695 kDa. Analysis of the amino acid sequence of BgaS protein, deduced from the bgaS ORF, suggested that it is a member of the glycosyl hydrolase family 2. A native cold-adapted β-galactosidase was purified to homogeneity and characterized. It is a homotetrameric enzyme, each subunit being approximately 116 kDa polypeptide as deduced from native and SDS–PAGE, respectively. The β-galactosidase was optimally active at pH 6.0–8.0 and 25°C. P-nitrophenyl-β-d-galactopyranoside (PNPG) is its preferred substrate (three times higher activity than for ONPG—o-nitrophenyl-β-d-galactopyranoside). The Arthrobacter sp. 20B β-galactosidase is activated by thiol compounds (53% rise in activity in the presence of 10 mM 2-mercaptoethanol), some metal ions (activity increased by 50% for Na+, K+ and by 11% for Mn2+) and inactivated by pCMB (4-chloro-mercuribenzoic acid) and heavy metal ions (Pb2+, Zn2+, Cu2+).


Cold-adapted enzymes β-Galactosidase Arthrobacter sp. Lactose hydrolysis Psychrotrophic microorganisms 



Open reading frame










4-Chloro-mercuribenzoic acid




Phenylmethylsulphonyl fluoride


  1. Adams MWW, Perler FB, Kelly RM (1995) Extremozymes: expanding the limits of biocatalysis. Biotechnology 13:662–668CrossRefPubMedGoogle Scholar
  2. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410PubMedGoogle Scholar
  3. Becker VE, Evans HJ (1969) The influence of monovalent cations and hydrostatic pressure on β-galactosidase activity. Biochim Biophys Acta 191:95–104PubMedGoogle Scholar
  4. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254CrossRefPubMedGoogle Scholar
  5. Cavicchioli R, Siddiqui KS, Andrews D, Sowers KR (2002) Low-temperature extremophiles and their applications. Curr Opin Biotechnol 13:253–261CrossRefPubMedGoogle Scholar
  6. Chessa JP, Petrescu I, Bentahir M, Van Beeuman J, Gerday CH (2000) Purification physico-chemical characterization and sequence of a heat labile metalloprotease isolated from a psychrophilic Pseudomonas species. Biochim Biophys Acta 1479:265–274PubMedGoogle Scholar
  7. Cieśliński H, Kur J, Białkowska A, Baran I, Makowski K, Turkiewicz M (2005) Cloning, expression, and purification of a recombinant cold-adapted β-galactosidase from Antarctic bacterium Pseudoalteromonas sp. 22b. Protein Expr Purif 39:27–34CrossRefPubMedGoogle Scholar
  8. Coker JA, Sheridan PP, Loveland-Curtze J, Gutshall KR, Auman AJ, Brenchley JE (2003) Biochemical characterization of a β-galactosidase with a low temperature optimum obtained from an Antarctic Arthrobacter isolate. J Bacteriol 185(18):5473–5482CrossRefPubMedGoogle Scholar
  9. Coombs JM, Brenchley JE (1999) Biochemical and phylogenetic analyses of a cold-active β-galactosidase from the lactic acid bacterium Carnobacterium piscicola BA. Appl Environ Microbiol 65:5443–5450PubMedGoogle Scholar
  10. Davail S, Feller G, Narinx E, Gerday CH (1994) Cold-adaptation of proteins. Purification, characterization and sequence of the heat-labile subtilisin from the Antarctic psychrophile Bacillus TA. J Biol Chem 269:17448–17453PubMedGoogle Scholar
  11. Davis BJ (1964) Disc electrophoresis. II. Methods and application to human serum protein. Ann N Y Acad Sci 2:366–382Google Scholar
  12. Feller G, Gerday CH (1997) Psychrophilic enzymes: molecular basis of cold adaptation. CMLS, Cell Mol Life Sci 53:830–841CrossRefGoogle Scholar
  13. Feller G, Gerday CH (2003) Psychrophilic enzymes: hot topics in cold adaptation. Nature 1:200–208Google Scholar
  14. Feller G, Thiry JL, Arpigny JL, Mergeay M, Gerday C (1990) Lipases from psychrophilic Antarctic organisms. FEMS Microbiol Lett 66:239–244CrossRefGoogle Scholar
  15. Fernandes S, Geueke B, Delgado O, Coleman J, Haiti-Kaul R (2002) β-galactosidase from a cold-adapted bacterium: purification, characterization and application for lactose hydrolysis. Appl Microbiol Biotechnol 58:313–321CrossRefPubMedGoogle Scholar
  16. Goldstein A, Lampen O (1975) Beta-d-fructofuranoside fructohydrolase from yeast. Methods Enzymol 42:504–511CrossRefPubMedGoogle Scholar
  17. Gomes J, Steiner W (2004) The biocatalytic potential of extremophiles and extremozymes. Food Technol Biotechnol 42(4):223–235Google Scholar
  18. Gutshall KR, Trimbur DE, Kasmir JJ, Brenchley JE (1995) Analysis of a novel gene and β-galactosidase isozyme from a psychrotrophic Arthrobacter isolate. J Bacteriol 177:1981–1988PubMedGoogle Scholar
  19. Henrissat B, Davies G (1997) Structural and sequence-based classification of glycoside hydrolases. Curr Opin Struct Biol 7:637–644CrossRefPubMedGoogle Scholar
  20. Hoyoux A, Jennes I, Dubois P, Genicot S, Dubail F, François JM, Baise E, Feller G, Gerday CH (2001) Cold adapted β-galactosidase from the Antarctic psychrophile Pseudoalteromonas haloplanktis. Appl Environ Microbiol 67:1529–1535CrossRefPubMedGoogle Scholar
  21. Hoyoux A, Blaise V, Collins T, D’Amico S, Gratia E, Huston AL, Marx JC, Sonan G, Zeng Y, Feller G (2004) Extreme catalysts from low-temperature environments. J Biosci Bioeng 98(5):317–330PubMedGoogle Scholar
  22. Hung MN, Lee BH (2002) Purification and characterization of a recombinant β-galactosidase with transgalactosylation activity Bifidobacterium infantis HL 96. Appl Microbiol Biotechnol 58:439–445CrossRefPubMedGoogle Scholar
  23. Jaeger S, Schmuck R, Sobek H (2000) Molecular cloning, sequencing, and expression of the heat-labile uracil—DNA glycosylase from a marine psychrophilic bacterium, strain BMTU33469. Extremophiles 4:115–122CrossRefPubMedGoogle Scholar
  24. Jahandideh S, Asadabadi EB, Abdolmaleki P, Jahandideh M, Hoseini S (2007) Protein psychrophilicity: role of residual structural properties in adaptation of proteins to low temperatures. J Theor Biol 248:721–726CrossRefPubMedGoogle Scholar
  25. Karasová P, Spiwok V, Malá S, Králová B, Russell N (2002) Beta-galactosidase activity in psychrotrophic microorganisms and their potential use in food industry. Czech J Food Sci 20:43–47Google Scholar
  26. Karasová-Lipovová P, Strnad H, Spiwok V, Malá S, Králová B, Russell NJ (2003) The clonning, purification and characterisation of a cold-active β-galactosidase from the psychrotolerant Antarctic bacterium Arthrobacter sp. C2-2. Enzyme Microb Technol 33:836–844CrossRefGoogle Scholar
  27. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685CrossRefPubMedGoogle Scholar
  28. Leahy M, Vaughan P, Fanning S, Sheehan D (2001) Purification and some characteristics of a recombinant dimeric Rhizobium meliloti β-galactosidase expressed in Escherichia coli. Enzyme Microb Technol 28:682–688CrossRefPubMedGoogle Scholar
  29. Loveland J, Gutshall K, Kasmir J, Prema P, Brenchley JE (1994) Characterization of psychrotrophic microorganisms producing β-galactosidase activities. Appl Environ Microbiol 60:12–18PubMedGoogle Scholar
  30. Margesin R, Palma N, Knauseder F, Schinner F (1992) Purification and characterization of an alkaline protease produced by a psychrotrophic Bacillus sp. J Biotechnol 24:203–206CrossRefGoogle Scholar
  31. Morita Y, Hasan Q, Sakaguchi T, Murakami Y, Yokoyama K, Tamiya E (1998) Properties of cold-active protease from psychrophilic Flavobacterium balustinum P104. Appl Microbiol Biotechnol 50:669–675CrossRefPubMedGoogle Scholar
  32. Nagy Z, Kiss T, Szentirmai A, Biros S (2001) β-galactosidase of Penicillum chrysogenum: production, purification, and characterization of the enzyme. Protein Expr Purif 21:24–29CrossRefPubMedGoogle Scholar
  33. Nakagawa T, Fujimoto Y, Ikehata R, Miyaji T, Tomizuka N (2006a) Purification and molecular characterization of cold-active β-galactosidase from Arthrobacter psychrolactophilus strain F2. Appl Microbiol Biotechnol 72(4):720–725CrossRefPubMedGoogle Scholar
  34. Nakagawa T, Ikehata R, Uchino M, Miyaji T, Takano K, Tomizuka N (2006b) Cold-active acid β-galactosidase activity of isolated psychrophilic—basidiomycetous yeast Guehomyces pullulans. Microbiol Res 161:75–79CrossRefPubMedGoogle Scholar
  35. Neville MC, Ling GN (1967) Synergistic activation of β-galactosidase by Na+ and Cs+. Arch Biochem Biophys 118:596–610CrossRefPubMedGoogle Scholar
  36. Nichols D, Bowman J, Sanderson K, Mansuco CN, Lewis T, McMeekin T, Nichols PD (1999) Developments with Antarctic microorganisms: culture collection, bioactivity screening, taxonomy, PUFA production and cold-adapted enzymes. Curr Opin Biotechnol 10:240–246CrossRefPubMedGoogle Scholar
  37. Ornstein L (1964) Disc electrophoresis. I. Background and theory. Ann N Y Acad Sci 121:321–349CrossRefPubMedGoogle Scholar
  38. Petegem FV, Collins T, Meuwis MA, Ch Gerday, Feller G, Beeumen JV (2003) The structure of a cold-adapted family 8 xylanase at 1.3 Å resolution. J Biol Chem 278:7531–7539CrossRefPubMedGoogle Scholar
  39. Ray MK, Uma Devi K, Seshu Kumar G, Shivaji S (1992) Extracellular protease from the Antarctic yeast Candida humicola. Appl Environ Microbiol 58:1918–1923PubMedGoogle Scholar
  40. Sheridan PP, Brenchley JE (2000) Characterization of a salt-tolerant family 42-β-galactosidase from a psychrophilic Antarctic Planococcus isolate. Appl Environ Microbiol 66:2438–2444CrossRefPubMedGoogle Scholar
  41. Siddiqui KS, Caviccholi R (2006) Cold adapted enzymes. Annu Rev Biochem 75:403–433CrossRefPubMedGoogle Scholar
  42. Tkaczuk KL, Bujnicki JM, Bialkowska A, Bielecki S, Turkiewicz M, Cieśliński H, Kur J (2005) Molecular modelling of psychrophilic β-galactosidase. Biocat Biotransf 23:201–209CrossRefGoogle Scholar
  43. Trimbur DE, Gutshall KR, Prema P, Brenchley JE (1994) Characterization of a psychrotrophic Arthrobacter gene and its cold-active β-galactosidase. Appl Environ Microbiol 60:4544–4552PubMedGoogle Scholar
  44. Turkiewicz M, Kur J, Białkowska A, Cieślinski H, Kalinowska H, Bielecki S (2003) Antarctic marine bacterium Pseudoalteromonas sp. 22b as a source of cold-adapted β-galactosidase. Biomol Eng 20:317–324CrossRefPubMedGoogle Scholar
  45. Vallenfels K, Weil R (1972) Beta-galactosidase. In: Boyer PD (ed) The enzymes, vol 7, 3rd edn. Academic Press, New York, pp 617–663Google Scholar
  46. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703PubMedGoogle Scholar
  47. Zecchinon L, Claverie P, Collins T, D’Amico S, Delille D, Feler G, Georlette D, Gratia E, Hoyoux A, Meuwis MA, Sonan G, Gerday C (2001) Did psychrophilic enzymes really win the challenge? Extremophiles 5:313–321CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Aneta Monika Białkowska
    • 1
  • Hubert Cieśliński
    • 2
  • Karolina Maria Nowakowska
    • 1
    • 2
  • Józef Kur
    • 2
  • Marianna Turkiewicz
    • 1
  1. 1.Institute of Technical Biochemistry (ITB)Technical University of ŁódźŁódźPoland
  2. 2.Department of MicrobiologyGdańsk University of TechnologyGdańskPoland

Personalised recommendations