Archives of Microbiology

, Volume 191, Issue 8, pp 675–679 | Cite as

Amiodarone inhibits multiple drug resistance in yeast Saccharomyces cerevisiae

  • Dmitry A. Knorre
  • Tatiana N. Krivonosova
  • Olga V. Markova
  • Fedor F. Severin
Short Communication

Abstract

Amiodarone is a widely used antiarrhythmic drug. There is also evidence that amiodarone decreases multidrug resistance in human cell lines. In this paper, we have shown that amiodarone has similar effect on yeast, Saccharomyces cerevisiae, decreasing multiple drug resistance. Amiodarone stimulates the accumulation of ethidium bromide by inhibiting its efflux from the cells. The effect of amiodarone is much stronger on wild-type cells compared to the mutant with inactivated ABC-transporters. Interestingly, the action of amiodarone is additive with the one of chloroquine, a known inhibitor of ABC-transporters. We speculate that these findings could help in the development of antifungal drug mixes.

Keywords

Yeast Amiodarone Pleiotropic drug resistance Multidrug resistance 

Abbreviations

ABC

ATP-binding cassette

MDR

Multiple drug resitance

EB

Ethidium bromide

C12-TPP

Dodecyltriphenylphosphonium

References

  1. Calich VL, Purchio A, Paula CR (1979) A new fluorescent viability test for fungi cells. Mycopathologia 66:175–177PubMedCrossRefGoogle Scholar
  2. Emerson LR, Skillman BC, Wolfger H, Kuchler K, Wirth DF (2004) The sensitivities of yeast strains deficient in PDR ABC transporters, to quinoline-ring antimalarial drugs. Ann Trop Med Parasitol 98:643–649PubMedCrossRefGoogle Scholar
  3. Foland TB, Dentler WL, Suprenant KA, Gupta ML Jr, Himes RH (2005) Paclitaxel-induced microtubule stabilization causes mitotic block and apoptotic-like cell death in a paclitaxel-sensitive strain of Saccharomyces cerevisiae. Yeast 22:971–978PubMedCrossRefGoogle Scholar
  4. Gupta SS, Ton VK, Beaudry V, Rulli S, Cunningham K, Rao R (2003) Antifungal activity of amiodarone is mediated by disruption of calcium homeostasis. J Biol Chem 278:28831–28839PubMedCrossRefGoogle Scholar
  5. Katzmann DJ et al (1995) Expression of an ATP-binding cassette transporter-encoding gene (YOR1) is required for oligomycin resistance in Saccharomyces cerevisiae. Mol Cell Biol 15:6875–6883PubMedGoogle Scholar
  6. Kolaczkowska A, Kolaczkowski M, Goffeau A, Moye-Rowley WS (2008) Compensatory activation of the multidrug transporters Pdr5p, Snq2p, and Yor1p by Pdr1p in Saccharomyces cerevisiae. FEBS Lett 582:977–983PubMedCrossRefGoogle Scholar
  7. Leppert G, McDevitt R, Falco SC, Van Dyk TK, Ficke MB, Golin J (1990) Cloning by gene amplification of two loci conferring multiple drug resistance in Saccharomyces. Genetics 125:13–20PubMedGoogle Scholar
  8. Lewis K (1994) Multidrug resistance pumps in bacteria: variations on a theme. Trends Biochem Sci 19:119–123PubMedCrossRefGoogle Scholar
  9. Maresova L, Muend S, Zhang YQ, Sychrova H, Rao R (2009) Membrane hyperpolarization drives cation influx and fungicidal activity of amiodarone. J Biol Chem 284:2795–2802PubMedCrossRefGoogle Scholar
  10. Muend S, Rao R (2008) Fungicidal activity of amiodarone is tightly coupled to calcium influx. FEMS Yeast Res 8:425–431PubMedCrossRefGoogle Scholar
  11. Pozniakovsky AI, Knorre DA, Markova OV, Hyman AA, Skulachev VP, Severin FF (2005) Role of mitochondria in the pheromone- and amiodarone-induced programmed death of yeast. J Cell Biol 168:257–269PubMedCrossRefGoogle Scholar
  12. Raymond M, Ruetz S, Thomas DY, Gros P (1994) Functional expression of P-glycoprotein in Saccharomyces cerevisiae confers cellular resistance to the immunosuppressive and antifungal agent FK520. Mol Cell Biol 14:277–286PubMedGoogle Scholar
  13. Sherman F (2002) Getting started with yeast. Methods Enzymol 350:3–41PubMedCrossRefGoogle Scholar
  14. van der Graaf WT et al (1991) In vitro and in vivo modulation of multi-drug resistance with amiodarone. Int J Cancer 48:616–622PubMedCrossRefGoogle Scholar
  15. van der Graaf WT et al (1994) Effects of amiodarone, cyclosporin A, and PSC 833 on the cytotoxicity of mitoxantrone, doxorubicin, and vincristine in non-P-glycoprotein human small cell lung cancer cell lines. Cancer Res 54:5368–5373PubMedGoogle Scholar
  16. Varbiro G, Toth A, Tapodi A, Veres B, Sumegi B, Gallyas F Jr (2003) Concentration-dependent mitochondrial effect of amiodarone. Biochem Pharmacol 65:1115–1128PubMedCrossRefGoogle Scholar
  17. Wigler PW (1996) Cellular drug efflux and reversal therapy of cancer. J Bioenerg Biomembr 28:279–284PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Dmitry A. Knorre
    • 1
  • Tatiana N. Krivonosova
    • 1
  • Olga V. Markova
    • 1
  • Fedor F. Severin
    • 1
  1. 1.A.N. Belozersky Institute of Physico-Chemical BiologyMoscow State UniversityMoscowRussia

Personalised recommendations