Archives of Microbiology

, Volume 191, Issue 6, pp 485–492 | Cite as

Genetic and biochemical analyses of chlorobenzene degradation gene clusters in Pandoraea sp. strain MCB032

  • Xi-Wen Jiang
  • Hong Liu
  • Ying Xu
  • Shu-Jun Wang
  • David J. Leak
  • Ning-Yi Zhou
Original Paper

Abstract

Pandoraea sp. strain MCB032 was isolated as an emerging chlorobenzene degrader from a functionally stable bioreactor where species succession had occurred. In this study, two gene clusters encoding chlorobenzene metabolic functions have been cloned. Within the cbs gene cluster, CbsA and CbsB are similar to the chlorobenzene dioxygenase and the cis-chlorobenzene dihydrodiol dehydrogenase in Ralstonia sp. JS705 and shown to transform chlorobenzene to 3-chlorocatechol. The clc gene cluster shows strong similarity to the clc genes of Ralstonia sp. JS705 and encodes chlorocatechol 1,2-dioxygenase (ClcA) and other enzymes, which catalyze the conversion of chlorocatechol to 3-oxoadipate. The Michaelis constants (Km) values of ClcA for catechol, 3-methylcatechol and 3-chlorocatechol were determined as 10.0, 8.9 and 3.4 μM, respectively. CbsX, a putative transport protein present in the cbs cluster of strain MCB032 but not in those of other chlorobenzene degraders, shows 76 and 53% identities to two previously identified transport proteins involved in toluene degradation, TbuX from Ralstonia pickettii PKO1 and TodX from Pseudomonas putida F1. The presence of the transport protein in strain MCB032 likely provides a mechanistic explanation for its higher chlorobenzene affinity and may well be the basis for the competitive advantage of this strain in the bioreactor.

Keywords

Chlorobenzene Chlorocatechol Degradation Pandoraea 

References

  1. Baptista IIR, Zhou NY, Emanuelsson EAC, Peeva LG, Leak DJ, Mantalaris A, Livingston AG (2008) Evidence of species succession during chlorobenzene biodegradation. Biotechnol Bioeng 99:68–74PubMedCrossRefGoogle Scholar
  2. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254PubMedCrossRefGoogle Scholar
  3. Byrne AM, Olsen RH (1996) Cascade regulation of the toluene-3-monooxygenase operon (tbuA1UBVA2C) of Burkholderia pickettii PKO1: role of the tbuA1 promoter (PtbuA1) in the expression of its cognate activator, TbuT. J Bacteriol 178:6327–6337PubMedGoogle Scholar
  4. Coenye T, Falsen E, Hoste B, Ohlen M, Goris J, Govan JRW, Gillis M, Vandamm P (2000) Description of Pandoraea gen. nov. with Pandoraea apista sp. nov., Pandoraea pulmonicola sp. nov., Pandoraea pnomenusa sp. nov., Pandoraea sputorum sp. nov. and Pandoraea norimbergensis comb. nov. Int J Syst Evol Microbiol 50:887–899PubMedGoogle Scholar
  5. Dorn E, Knackmuss HJ (1978) Chemical structure and biodegradability of halogenated aromatic compounds: substituent effect on 1, 2-dioxygenase of catechol. Biochem J 174:85–94PubMedGoogle Scholar
  6. Emanuelsson EAC, Baptista IIR, Mantalaris A, Livingston AG (2005) Strain stability in biological systems treating recalcitrant organic compounds. Biotechnol Bioeng 92:843–849PubMedCrossRefGoogle Scholar
  7. Gaillard M, Vallaeys T, Vorholter FJ, Minoia M, Werlen C, Sentchilo V, Puhler A, van der Meer JR (2006) The clc element of Pseudomonas sp. strain B13, a genomic island with various catabolic properties. J Bacteriol 188:1999–2013PubMedCrossRefGoogle Scholar
  8. Haigler BE, Nishino SF, Spain JC (1988) Degradation of 1, 2-dichlorobenzene by a Pseudomonas sp. Appl Environ Microbiol 54:294–301PubMedGoogle Scholar
  9. Haigler BE, Pettigrew CA, Spain JC (1992) Biodegradation of mixtures of substituted benzenes by Pseudomonas sp. strain JS150. Appl Environ Microbiol 58:2237–2244PubMedGoogle Scholar
  10. Kahng HY, Byrne AM, Olsen RH, Kukor JJ (2000) Characterization and role of tbuX in utilization of toluene by Ralstonia pickettii PKO1. J Bacteriol 182:1232–1242PubMedCrossRefGoogle Scholar
  11. Kasberg T, Seibert V, Schlomann M, Reineke W (1997) Cloning, characterization, and sequence analysis of the clcE gene encoding the maleylacetate reductase of Pseudomonas sp. strain B13. J Bacteriol 179:3801–3803PubMedGoogle Scholar
  12. Liu H, Wang SJ, Zhou NY (2005) A new isolate of Pseudomonas stutzeri that degrades 2-chloronitrobenzene. Biotechnol Lett 27:275–278PubMedCrossRefGoogle Scholar
  13. Mars AE, Kasberg T, Kaschabek SR, van Agteren MH, Janssen DB, Reineke W (1997) Microbial degradation of chloroaromatics: use of the meta-cleavage pathway for mineralization of chlorobenzene. J Bacteriol 179:4530–4537PubMedGoogle Scholar
  14. Nishino SF, Spain JC, Belcher LA, Litchfield CD (1992) Chlorobenzene degradation by bacteria isolated from contaminated groundwater. Appl Environ Microbiol 58:1719–1726PubMedGoogle Scholar
  15. Oliveira TA, Livingston AG (2003) Bioscrubbing of waste gas-substrate absorber to avoid instability induced by inhibition kinetics. Biotechnol Bioeng 84:552–563PubMedCrossRefGoogle Scholar
  16. Pettigrew CA, Haigler BE, Spain JC (1991) Simultaneous biodegradation of chlorobenzene and toluene by a Pseudomonas strain. Appl Environ Microbiol 57:157–162PubMedGoogle Scholar
  17. Pollmann K, Beil S, Pieper DH (2001) Transformation of chlorinated benzenes and toluenes by Ralstonia sp. strain PS12 tecA (tetrachlorobenzene dioxygenase) and tecB (Chlorobenzene dihydrodiol dehydrogenase) gene products. Appl Environ Microbiol 67:4057–4063PubMedCrossRefGoogle Scholar
  18. Reineke W, Knackmuss HJ (1980) Hybrid pathway for chlorobenzoate metabolism in Pseudomonas sp. B13 derivatives. J Bacteriol 142:467–473PubMedGoogle Scholar
  19. Sambrook J, FritsCh EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring HarborGoogle Scholar
  20. Schraa G, Boone M, Jetten MSM, van Neerven ARW, Colberg PJ, Zehnder AJB (1986) Degradation of 1, 4-dichlorobenzene by Alcaligenes sp. strain A175. Appl Environ Microbiol 52:1374–1381PubMedGoogle Scholar
  21. Sentchilo V, Zehnder AJ, van der Meer JR (2003) Characterization of two alternative promoters for integrase expression in the clc genomic island of Pseudomonas sp. strain B13. Mol Microbiol 49:93–104PubMedCrossRefGoogle Scholar
  22. Siebert PD, Chenchik A, Kellogg DE, Lukyanov KA, Lukyanov SA (1995) An improved PCR method for walking in uncloned genomic DNA. Nucleic Acids Res 23:1087–1088PubMedCrossRefGoogle Scholar
  23. Spain JC, Nishino SF (1987) Degradation of 1, 4-dichlorobenzene by a Pseudomonas sp. Appl Environ Microbiol 53:1010–1019PubMedGoogle Scholar
  24. van der Meer JR (1997) Evolution of novel metabolic pathways for the degradation of chloroaromatic compounds. Anton Leeuw Int J G 71:159–178CrossRefGoogle Scholar
  25. van der Meer JR, Werlen C, Nishino SF, Spain JC (1998) Evolution of a pathway for chlorobenzene metabolism leads to natural attenuation in contaminated groundwater. Appl Environ Microbiol 64:4185–4193PubMedGoogle Scholar
  26. Wang Y, Rawlings M, Gibson DT, Labbe D, Bergeron H, Brousseau R, Lau PC (1995) Identification of a membrane protein and a truncated LysR-type regulator associated with the toluene degradation pathway in Pseudomonas putida F1. Mol Gen Genet 246:570–579PubMedCrossRefGoogle Scholar
  27. Werlen C, Kohler HE, van der Meer JR (1996) The broad substrate chlorobenzene dioxygenase and cis-chlorobenzene dihydrodiol dehydrogenase of Pseudomonas sp. strain P51 are linked evolutionarily to the enzymes for benzene and toluene degradation. J Biol Chem 271:4009–4016PubMedCrossRefGoogle Scholar
  28. Wittich RM, Busse HJ, Kämpfer P, Tiirola M, Wieser M, Macedo AJ, Abraham WR (2007) Sphingobium aromaticiconvertens sp. nov., a xenobiotic-compound-degrading bacterium from polluted river sediment. Int J Syst Evol Microbiol 57:306–310PubMedCrossRefGoogle Scholar
  29. Xiao Y, Wu JF, Liu H, Wang SJ, Liu SJ, Zhou NY (2006) Characterization of genes involved in the initial reactions of 4-chloronitrobenzene degradation in Pseudomonas putida ZWL73. Appl Microbiol Biotechnol 73:166–171PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Xi-Wen Jiang
    • 1
  • Hong Liu
    • 1
  • Ying Xu
    • 1
  • Shu-Jun Wang
    • 1
  • David J. Leak
    • 2
  • Ning-Yi Zhou
    • 1
  1. 1.State Key Laboratory of Virology, Wuhan Institute of VirologyChinese Academy of SciencesWuhanChina
  2. 2.Division of Biology, Faculty of Natural SciencesImperial College LondonLondonUK

Personalised recommendations